• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View

    Autor: 
    Casetti-Dinescu, Dana
    ;
    Baena-Gallé, Roberto
    ;
    Girard, Terrence
    ;
    Cervantes-Rovira, Alejandro
    ;
    Todeasa, Sebastian
    Fecha: 
    2024
    Palabra clave: 
    technology; mathematics; natural sciences
    Revista / editorial: 
    Publications of the Astronomical Society of the Pacific
    Citación: 
    Casetti-Dinescu, D. I., Baena-Gallé, R., Girard, T. M., Cervantes-Rovira, A., & Todeasa, S. (2024). Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View. Publications of the Astronomical Society of the Pacific, 136(5), 054501. https://doi.org/10.1088/1538-3873/ad430c
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/18691
    DOI: 
    https://doi.org/10.1088/1538-3873/ad430c
    Dirección web: 
    https://iopscience.iop.org/article/10.1088/1538-3873/ad430c/meta
    Open Access
    Resumen:
    We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL model can eliminate the pixel-phase bias otherwise present in these undersampled images; however that analysis was limited to the central portion of each detector. In the current work we introduce the inclusion of global positions to account for the point-spread function (PSF) variation across the entire chip and instrumental magnitudes to account for nonlinear effects such as charge transfer efficiency. The DL model is trained using a unique series of WFPC2 observations of globular cluster 47 Tuc, data sets comprising over 600 dithered exposures taken in each of two filters—F555W and F814W. It is found that the PSF variations across each chip correspond to corrections of the order of ∼100 mpix, while magnitude effects are at a level of ∼10 mpix. Importantly, pixelphase bias is eliminated with the DL model; whereas, with a classic centering algorithm, the amplitude of this bias can be up to ∼40 mpix. Our improved DL model yields star-image centers with uncertainties of 8–10 mpix across the full field of view of WFPC2.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Casetti-Dinescu_2024_PASP_136_054501.pdf
    Tamaño: 1.298Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    7

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Astronomical PSF characterization using grammar evolution and symbolic regression 

      Sarmiento, Ricardo; Baena-Gallé, Roberto; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)
      Symbolic regression techniques are promising approaches to learning mathematical models that fit experimental data. One of the most powerful techniques for symbolic regression is Grammatical Evolution (GE). This evolutionary ...
    • Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images 

      Sarmiento, Ricardo; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Baena-Gallé, Roberto; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)
      Symbolic regression, in general, and genetic models, in particular, are promising approaches to mathematical modeling in astrometry where it is not always clear which is the fittest analytic expression depending on the ...
    • Star-image Centering with Deep Learning: HST/WFPC2 Images 

      Casetti-Dinescu, Dana I.; Girard, Terrence M.; Baena-Galle, Roberto; Martone, Max; Schwendemann, Kate (Publications of the Astronomical Society of the Pacific, 2023)
      A deep learning (DL) algorithm is built and tested for its ability to determine centers of star images in HST/WFPC2 exposures, in filters F555W and F814W. These archival observations hold great potential for proper-motion ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja