Star-image Centering with Deep Learning: HST/WFPC2 Images
Autor:
Casetti-Dinescu, Dana I.
; Girard, Terrence M.
; Baena-Galle, Roberto
; Martone, Max
; Schwendemann, Kate
Fecha:
2023Palabra clave:
Revista / editorial:
Publications of the Astronomical Society of the PacificCitación:
Casetti-Dinescu, D. I., Girard, T. M., Baena-Gallé, R., Martone, M., & Schwendemann, K. (2023). Star-image Centering with Deep Learning: HST/WFPC2 Images. Publications of the Astronomical Society of the Pacific, 135(1047), 054501.Tipo de Ítem:
Articulo Revista IndexadaDirección web:
https://iopscience.iop.org/article/10.1088/1538-3873/acd080Resumen:
A deep learning (DL) algorithm is built and tested for its ability to determine centers of star images in HST/WFPC2 exposures, in filters F555W and F814W. These archival observations hold great potential for proper-motion studies, but the undersampling in the camera’s detectors presents challenges for conventional centering algorithms. Two exquisite data sets of over 600 exposures of the cluster NGC 104 in these filters are used as a testbed for training and evaluating the DL code. Results indicate a single-measurement standard error from 8.5 to 11 mpix, depending on the detector and filter. This compares favorably to the ∼20 mpix achieved with the customary “effective point spread function (PSF)” centering procedure for WFPC2 images. Importantly, the pixel-phase error is largely eliminated when using the DL method. The current tests are limited to the central portion of each detector; in future studies, the DL code will be modified to allow for the known variation of the PSF across the detectors.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
| Año |
| 2012 |
| 2013 |
| 2014 |
| 2015 |
| 2016 |
| 2017 |
| 2018 |
| 2019 |
| 2020 |
| 2021 |
| 2022 |
| 2023 |
| 2024 |
| 2025 |
| 2026 |
| Vistas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 14 |
| 63 |
| 43 |
| 21 |
| Descargas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View
Casetti-Dinescu, Dana; Baena-Gallé, Roberto; Girard, Terrence; Cervantes-Rovira, Alejandro; Todeasa, Sebastian (Publications of the Astronomical Society of the Pacific, 2024)We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL ... -
Astronomical PSF characterization using grammar evolution and symbolic regression
Sarmiento, Ricardo; Baena-Gallé, Roberto; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)Symbolic regression techniques are promising approaches to learning mathematical models that fit experimental data. One of the most powerful techniques for symbolic regression is Grammatical Evolution (GE). This evolutionary ... -
Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images
Sarmiento, Ricardo; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Baena-Gallé, Roberto; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)Symbolic regression, in general, and genetic models, in particular, are promising approaches to mathematical modeling in astrometry where it is not always clear which is the fittest analytic expression depending on the ...





