• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Star-image Centering with Deep Learning: HST/WFPC2 Images

    Autor: 
    Casetti-Dinescu, Dana I.
    ;
    Girard, Terrence M.
    ;
    Baena-Galle, Roberto
    ;
    Martone, Max
    ;
    Schwendemann, Kate
    Fecha: 
    2023
    Palabra clave: 
    WFPC2; deep learning; JCR; Scopus
    Revista / editorial: 
    Publications of the Astronomical Society of the Pacific
    Citación: 
    Casetti-Dinescu, D. I., Girard, T. M., Baena-Gallé, R., Martone, M., & Schwendemann, K. (2023). Star-image Centering with Deep Learning: HST/WFPC2 Images. Publications of the Astronomical Society of the Pacific, 135(1047), 054501.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15545
    DOI: 
    https://doi.org/10.1088/1538-3873/acd080
    Dirección web: 
    https://iopscience.iop.org/article/10.1088/1538-3873/acd080
    Resumen:
    A deep learning (DL) algorithm is built and tested for its ability to determine centers of star images in HST/WFPC2 exposures, in filters F555W and F814W. These archival observations hold great potential for proper-motion studies, but the undersampling in the camera’s detectors presents challenges for conventional centering algorithms. Two exquisite data sets of over 600 exposures of the cluster NGC 104 in these filters are used as a testbed for training and evaluating the DL code. Results indicate a single-measurement standard error from 8.5 to 11 mpix, depending on the detector and filter. This compares favorably to the ∼20 mpix achieved with the customary “effective point spread function (PSF)” centering procedure for WFPC2 images. Importantly, the pixel-phase error is largely eliminated when using the DL method. The current tests are limited to the central portion of each detector; in future studies, the DL code will be modified to allow for the known variation of the PSF across the detectors.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    14
    63
    43
    21
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View 

      Casetti-Dinescu, Dana; Baena-Gallé, Roberto; Girard, Terrence; Cervantes-Rovira, Alejandro; Todeasa, Sebastian (Publications of the Astronomical Society of the Pacific, 2024)
      We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL ...
    • Astronomical PSF characterization using grammar evolution and symbolic regression 

      Sarmiento, Ricardo; Baena-Gallé, Roberto; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)
      Symbolic regression techniques are promising approaches to learning mathematical models that fit experimental data. One of the most powerful techniques for symbolic regression is Grammatical Evolution (GE). This evolutionary ...
    • Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images 

      Sarmiento, Ricardo; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Baena-Gallé, Roberto; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)
      Symbolic regression, in general, and genetic models, in particular, are promising approaches to mathematical modeling in astrometry where it is not always clear which is the fittest analytic expression depending on the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja