• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Congresos
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Congresos
    • Ver ítem

    Astronomical PSF characterization using grammar evolution and symbolic regression

    Autor: 
    Sarmiento, Ricardo
    ;
    Baena-Gallé, Roberto
    ;
    de la Cruz Echeandía, Marina
    ;
    Ortega de la Puente, Alfonso
    ;
    Girard, Terrence
    ;
    Casetti-Dinescu, Dana
    ;
    Cervantes-Rovira, Alejandro
    Fecha: 
    2024
    Palabra clave: 
    grammatical evolution; symbolic regression; astrometry; point spread function; WFPC2; Hubble Space Telescope
    Citación: 
    Ricardo Sarmiento, Roberto Baena-Galle, Marina de la Cruz Echeandía, Alfonso Ortega de la Puente, Terrence M. Girard, Dana Casetti-Dinescu, and Alejandro Cervantes-Rovira "Astronomical PSF characterization using grammar evolution and symbolic regression", Proc. SPIE 13101, Software and Cyberinfrastructure for Astronomy VIII, 131010Y (25 July 2024); https://doi.org/10.1117/12.3020969
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/18846
    DOI: 
    https://doi.org/10.1117/12.3020969
    Dirección web: 
    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13101/131010Y/Astronomical-PSF-characterization-using-grammar-evolution-and-symbolic-regression/10.1117/12.3020969.short
    Resumen:
    Symbolic regression techniques are promising approaches to learning mathematical models that fit experimental data. One of the most powerful techniques for symbolic regression is Grammatical Evolution (GE). This evolutionary computation technique explores a space of candidate models that are ensured to be syntactically correct expressions built from a set of arbitrary building blocks and operators. In GE the syntax for these expressions is defined by a problem-specific formal grammar. Therefore, GE can produce an explainable solution (e.g. a formula), not a black-box model. The current contribution assesses the viability of GE for PSF characterization, using real datasets from HST/WFPC2. Our experiments show that our method is able to find the most likely candidate mathematical expression for the PSF shape and can also model combinations of shapes taken from a predefined family of functions commonly used in astronomy (Gaussian and Moffat PSFs). These results support the hypothesis that the expressive power of GE can be used to tackle the problem of characterization of complex PSF functions, for example, as a necessary step in the prediction of intra-pixel position of stars.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Congresos

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    17
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    2

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images 

      Sarmiento, Ricardo; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Baena-Gallé, Roberto; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)
      Symbolic regression, in general, and genetic models, in particular, are promising approaches to mathematical modeling in astrometry where it is not always clear which is the fittest analytic expression depending on the ...
    • Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View 

      Casetti-Dinescu, Dana; Baena-Gallé, Roberto; Girard, Terrence; Cervantes-Rovira, Alejandro; Todeasa, Sebastian (Publications of the Astronomical Society of the Pacific, 2024)
      We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL ...
    • Impact of immunosuppression on Listeria monocytogenes infection in Spain 

      Vázquez, Elena; de Gregorio, Óscar; Álvarez, Carmen; Soriano, Vicente; Corral, Octavio; Ortega-de la Puente, Alfonso; de la Cruz-Echeandía, Marina; Blanco-Valencia, Xiomara Patricia; Royuela, Ana; Martín-Portugués, Mario; Esteban-Sampedro, Jorge; Moreno-Torres, Víctor (Pathogens and Global Health, 2025)
      Introduction Immunosuppression (IS) determines a higher risk of disease severity from Listeria monocytogenes (LM) infection. Methods We examined the epidemiology of IS in all patients hospitalized with LM in Spain ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja