Astronomical PSF characterization using grammar evolution and symbolic regression
Autor:
Sarmiento, Ricardo
; Baena-Gallé, Roberto
; de la Cruz Echeandía, Marina
; Ortega de la Puente, Alfonso
; Girard, Terrence
; Casetti-Dinescu, Dana
; Cervantes-Rovira, Alejandro
Fecha:
2024Palabra clave:
Citación:
Ricardo Sarmiento, Roberto Baena-Galle, Marina de la Cruz Echeandía, Alfonso Ortega de la Puente, Terrence M. Girard, Dana Casetti-Dinescu, and Alejandro Cervantes-Rovira "Astronomical PSF characterization using grammar evolution and symbolic regression", Proc. SPIE 13101, Software and Cyberinfrastructure for Astronomy VIII, 131010Y (25 July 2024); https://doi.org/10.1117/12.3020969Tipo de Ítem:
conferenceObjectResumen:
Symbolic regression techniques are promising approaches to learning mathematical models that fit experimental data. One of the most powerful techniques for symbolic regression is Grammatical Evolution (GE). This evolutionary computation technique explores a space of candidate models that are ensured to be syntactically correct expressions built from a set of arbitrary building blocks and operators. In GE the syntax for these expressions is defined by a problem-specific formal grammar. Therefore, GE can produce an explainable solution (e.g. a formula), not a black-box model. The current contribution assesses the viability of GE for PSF characterization, using real datasets from HST/WFPC2. Our experiments show that our method is able to find the most likely candidate mathematical expression for the PSF shape and can also model combinations of shapes taken from a predefined family of functions commonly used in astronomy (Gaussian and Moffat PSFs). These results support the hypothesis that the expressive power of GE can be used to tackle the problem of characterization of complex PSF functions, for example, as a necessary step in the prediction of intra-pixel position of stars.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
| Año |
| 2012 |
| 2013 |
| 2014 |
| 2015 |
| 2016 |
| 2017 |
| 2018 |
| 2019 |
| 2020 |
| 2021 |
| 2022 |
| 2023 |
| 2024 |
| 2025 |
| 2026 |
| Vistas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 17 |
| Descargas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 2 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images
Sarmiento, Ricardo; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Baena-Gallé, Roberto; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)Symbolic regression, in general, and genetic models, in particular, are promising approaches to mathematical modeling in astrometry where it is not always clear which is the fittest analytic expression depending on the ... -
Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View
Casetti-Dinescu, Dana; Baena-Gallé, Roberto; Girard, Terrence; Cervantes-Rovira, Alejandro; Todeasa, Sebastian (Publications of the Astronomical Society of the Pacific, 2024)We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL ... -
Impact of immunosuppression on Listeria monocytogenes infection in Spain
Vázquez, Elena; de Gregorio, Óscar; Álvarez, Carmen; Soriano, Vicente; Corral, Octavio; Ortega-de la Puente, Alfonso; de la Cruz-Echeandía, Marina; Blanco-Valencia, Xiomara Patricia; Royuela, Ana; Martín-Portugués, Mario; Esteban-Sampedro, Jorge; Moreno-Torres, Víctor (Pathogens and Global Health, 2025)Introduction Immunosuppression (IS) determines a higher risk of disease severity from Listeria monocytogenes (LM) infection. Methods We examined the epidemiology of IS in all patients hospitalized with LM in Spain ...





