Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images
Autor:
Sarmiento, Ricardo
; de la Cruz Echeandía, Marina
; Ortega de la Puente, Alfonso
; Baena-Gallé, Roberto
; Girard, Terrence
; Casetti-Dinescu, Dana
; Cervantes-Rovira, Alejandro
Fecha:
2024Palabra clave:
Citación:
Ricardo Sarmiento, Marina De La Cruz, Alfonso Ortega, Roberto Baena-Galle, Terrence M. Girard, Dana I. Casetti-Dinescu, and Alejandro Cervantes. 2024. Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images. In Proceedings of the 13th ACM/IEEE International Workshop on Genetic Improvement (GI '24). Association for Computing Machinery, New York, NY, USA, 13–20. https://doi.org/10.1145/3643692.3648264Tipo de Ítem:
conferenceObjectDirección web:
https://dl.acm.org/doi/10.1145/3643692.3648264
Resumen:
Symbolic regression, in general, and genetic models, in particular, are promising approaches to mathematical modeling in astrometry where it is not always clear which is the fittest analytic expression depending on the problem under consideration. Several attempts and increasing research efforts are being made in this direction mainly from the Genetic Programming (GP) viewpoint. Our proposal is, as far as we know, the first one to apply Grammatical Evolution (GE) in this domain. GE (and further GE extensions) aim to outperform GP limitations by incorporating formal languages tools to guarantee the correctness (both syntactic and semantic) of the generated expressions. The current contribution is a first proof to check the viability of GE on astrometric real datasets. Its success in finding adequate parameters for predefined families of functions in star centering (Gaussian and Moffat PSFs) with simple and naive GE experiments supports our hypothesis on taking advantage of the expressive power of GE to tackle astrometry scenarios of interest and hence greatly improve current astrometric software thanks to specific genetic approaches.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
| Año |
| 2012 |
| 2013 |
| 2014 |
| 2015 |
| 2016 |
| 2017 |
| 2018 |
| 2019 |
| 2020 |
| 2021 |
| 2022 |
| 2023 |
| 2024 |
| 2025 |
| 2026 |
| Vistas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 17 |
| Descargas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 5 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Astronomical PSF characterization using grammar evolution and symbolic regression
Sarmiento, Ricardo; Baena-Gallé, Roberto; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)Symbolic regression techniques are promising approaches to learning mathematical models that fit experimental data. One of the most powerful techniques for symbolic regression is Grammatical Evolution (GE). This evolutionary ... -
Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View
Casetti-Dinescu, Dana; Baena-Gallé, Roberto; Girard, Terrence; Cervantes-Rovira, Alejandro; Todeasa, Sebastian (Publications of the Astronomical Society of the Pacific, 2024)We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL ... -
Impact of immunosuppression on Listeria monocytogenes infection in Spain
Vázquez, Elena; de Gregorio, Óscar; Álvarez, Carmen; Soriano, Vicente; Corral, Octavio; Ortega-de la Puente, Alfonso; de la Cruz-Echeandía, Marina; Blanco-Valencia, Xiomara Patricia; Royuela, Ana; Martín-Portugués, Mario; Esteban-Sampedro, Jorge; Moreno-Torres, Víctor (Pathogens and Global Health, 2025)Introduction Immunosuppression (IS) determines a higher risk of disease severity from Listeria monocytogenes (LM) infection. Methods We examined the epidemiology of IS in all patients hospitalized with LM in Spain ...





