• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images

    Autor: 
    Sarmiento, Ricardo
    ;
    de la Cruz Echeandía, Marina
    ;
    Ortega de la Puente, Alfonso
    ;
    Baena-Gallé, Roberto
    ;
    Girard, Terrence
    ;
    Casetti-Dinescu, Dana
    ;
    Cervantes-Rovira, Alejandro
    Fecha: 
    2024
    Palabra clave: 
    grammatical evolution; symbolic regression; astrometry; WFPC2; Hubble Space Telescope
    Citación: 
    Ricardo Sarmiento, Marina De La Cruz, Alfonso Ortega, Roberto Baena-Galle, Terrence M. Girard, Dana I. Casetti-Dinescu, and Alejandro Cervantes. 2024. Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images. In Proceedings of the 13th ACM/IEEE International Workshop on Genetic Improvement (GI '24). Association for Computing Machinery, New York, NY, USA, 13–20. https://doi.org/10.1145/3643692.3648264
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/18847
    DOI: 
    https://doi.org/10.1145/3643692.3648264
    Dirección web: 
    https://dl.acm.org/doi/10.1145/3643692.3648264
    Open Access
    Resumen:
    Symbolic regression, in general, and genetic models, in particular, are promising approaches to mathematical modeling in astrometry where it is not always clear which is the fittest analytic expression depending on the problem under consideration. Several attempts and increasing research efforts are being made in this direction mainly from the Genetic Programming (GP) viewpoint. Our proposal is, as far as we know, the first one to apply Grammatical Evolution (GE) in this domain. GE (and further GE extensions) aim to outperform GP limitations by incorporating formal languages tools to guarantee the correctness (both syntactic and semantic) of the generated expressions. The current contribution is a first proof to check the viability of GE on astrometric real datasets. Its success in finding adequate parameters for predefined families of functions in star centering (Gaussian and Moffat PSFs) with simple and naive GE experiments supports our hypothesis on taking advantage of the expressive power of GE to tackle astrometry scenarios of interest and hence greatly improve current astrometric software thanks to specific genetic approaches.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Proceeding de la conferencia
    Tamaño: 1.041Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    17
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Astronomical PSF characterization using grammar evolution and symbolic regression 

      Sarmiento, Ricardo; Baena-Gallé, Roberto; de la Cruz Echeandía, Marina; Ortega de la Puente, Alfonso; Girard, Terrence; Casetti-Dinescu, Dana; Cervantes-Rovira, Alejandro (2024)
      Symbolic regression techniques are promising approaches to learning mathematical models that fit experimental data. One of the most powerful techniques for symbolic regression is Grammatical Evolution (GE). This evolutionary ...
    • Star Image Centering with Deep Learning. II. HST/WFPC2 Full Field of View 

      Casetti-Dinescu, Dana; Baena-Gallé, Roberto; Girard, Terrence; Cervantes-Rovira, Alejandro; Todeasa, Sebastian (Publications of the Astronomical Society of the Pacific, 2024)
      We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that our DL ...
    • Impact of immunosuppression on Listeria monocytogenes infection in Spain 

      Vázquez, Elena; de Gregorio, Óscar; Álvarez, Carmen; Soriano, Vicente; Corral, Octavio; Ortega-de la Puente, Alfonso; de la Cruz-Echeandía, Marina; Blanco-Valencia, Xiomara Patricia; Royuela, Ana; Martín-Portugués, Mario; Esteban-Sampedro, Jorge; Moreno-Torres, Víctor (Pathogens and Global Health, 2025)
      Introduction Immunosuppression (IS) determines a higher risk of disease severity from Listeria monocytogenes (LM) infection. Methods We examined the epidemiology of IS in all patients hospitalized with LM in Spain ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja