• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    G-Sep: A Deep Learning Algorithm for Detection of Long-Term Sepsis Using Bidirectional Gated Recurrent Unit

    Autor: 
    Rajmohan, R.
    ;
    Kumar, T. Ananth
    ;
    Julie, E. Golden
    ;
    Robinson, Y.H.
    ;
    Vimal, S.
    ;
    Kadry, Seifedine
    ;
    González-Crespo, Rubén
    Fecha: 
    2022
    Palabra clave: 
    sepsis; GRU; bidirectional; deep learning; Bi-GRU; healthcare; JCR; Scopus
    Revista / editorial: 
    International Journal of Uncertainty Fuzziness and Knowledge-Based Systems
    Citación: 
    Rajmohan, R., Kumar, T. A., Julie, E. G., Robinson, Y. H., Vimal, S., Kadry, S., & González-Crespo, R. (2022). G-Sep: A Deep Learning Algorithm for Detection of Long-Term Sepsis Using Bidirectional Gated Recurrent Unit.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14068
    DOI: 
    https://doi.org/10.1142/S0218488522400013
    Dirección web: 
    https://www.worldscientific.com/doi/10.1142/S0218488522400013
    Resumen:
    Sepsis is a common and deadly condition that must be treated eloquently within 19 hours. Numerous deep learning techniques, including Recurrent Neural Networks, Convolution Neural Networks, Long Short-Term Memory, and Gated Recurrent Units, have been suggested for diagnosing long-term sepsis. Regardless, a sizable portion of them are computationally risky and have precision problems. The primary issue described is that output will degrade, and resource utilization will expand proportionately as the volume of dependencies grows. To overcome these issues, we propose a G-Sep technique utilizing Bidirectional Gated Recurrent Unit Algorithm, which consumes much less resource to detect the disease and in a short time with better accuracy than the existing methods to diagnose the sepsis. AI models could assist with distinguishing potential clinical factors and give better than existing conventional low-execution models. The proposed model is implemented utilizing Conda and Tensorflow Framework using the California Inpatient Severe Sepsis (CISS) Patient Dataset. The comparative simulation of the various existing models and the proposed G-Sep model is done using Conda and Tensor frameworks. The simulation results revealed that the proposed model had outperformed other frameworks in terms of mean average precision (mAP), receiver operating characteristic curve (ROC), and Area under the ROC Curve (AUROC) metrics linearly.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    77
    84
    97
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    1
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A Framework for Extractive Text Summarization Based on Deep Learning Modified Neural Network Classifier 

      Muthu, Bala Anand; Cb, Sivaparthipan; Kumar, Priyan Malarvizhi; Kadry, Seifedine; Hsu, Ching-Hsien; Sanjuán Martínez, Óscar; González-Crespo, Rubén (Association for Computing Machinery, 2021)
      There is an exponential growth of text data over the internet, and it is expected to gain significant growth and attention in the coming years. Extracting meaningful insights from text data is crucially important as it ...
    • Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT 

      Vimal, S.; Khari, Manju; Dey, Nilanjan; González-Crespo, Rubén ; Harold Robinson, Yesudhas (Computer Communications, 01/02/2020)
      The Mobile networks deploy and offers a multiaspective approach for various resource allocation paradigms and the service based options in the computing segments with its implication in the Industrial Internet of Things ...
    • Energy efficiency maximization algorithm for underwater Mobile sensor networks 

      Pasupathi, Subbulakshmi; Vimal, S.; Harold Robinson, Yesudhas; Verdú, Elena ; González-Crespo, Rubén (Earth science informatics, 2021)
      Modern Underwater Wireless Sensor Networks (UWSN) would provide big administrations with numerous underwater surveying and technical applications, working in the unstable submerged deep-water conditions. A huge obstacle ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja