• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT

    Autor: 
    Vimal, S.
    ;
    Khari, Manju
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén (1)
    ;
    Harold Robinson, Yesudhas
    Fecha: 
    01/02/2020
    Palabra clave: 
    mobile edge computing; industrial IOT; reinforcement learning; multi objective ant colony optimization; resource allocation; cognitive agent; Scopus; JCR
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/9904
    DOI: 
    https://doi.org/10.1016/j.comcom.2020.01.018
    Dirección web: 
    https://www.sciencedirect.com/science/article/abs/pii/S0140366419319255?via%3Dihub#!
    Resumen:
    The Mobile networks deploy and offers a multiaspective approach for various resource allocation paradigms and the service based options in the computing segments with its implication in the Industrial Internet of Things (IIOT) and the virtual reality. The Mobile edge computing (MEC) paradigm runs the virtual source with the edge communication between data terminals and the execution in the core network with a high pressure load. The demand to meet all the customer requirements is a better way for planning the execution with the support of cognitive agent. The user data with its behavioral approach is clubbed together to fulfill the service type for IIOT. The swarm intelligence based and reinforcement learning techniques provide a neural caching for the memory within the task execution, the prediction provides the caching strategy and cache business that delay the execution. The factors affecting this delay are predicted with mobile edge computing resources and to assess the performance in the neighboring user equipment. The effectiveness builds a cognitive agent model to assess the resource allocation and the communication network is established to enhance the quality of service. The Reinforcement Learning techniques Multi Objective Ant Colony Optimization (MOACO) algorithms has been applied to deal with the accurate resource allocation between the end users in the way of creating the cost mapping tables creations and optimal allocation in MEC.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    71
    37
    44
    4
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Energy enhancement using Multiobjective Ant colony optimization with Double Q learning algorithm for IoT based cognitive radio networks 

      Vimal, S.; Khari, Manju; González-Crespo, Rubén (1); Kalaivani, L.; Dey, Nilanjan; Kaliappan, Madasamy (Computer Communications, 03/2020)
      Internet of Things (IoT) is the efficient wireless communication in the modern era, energy efficiency is the primary issue that focuses mainly on the Cognitive network. Most of the CR networks are focusing on battery ...
    • Tree-based convolutional neural networks for object classification in segmented satellite images 

      Robinson, Y.H.; Vimal, S.; Khari, Manju; López Hernández, Fernando (1); González-Crespo, Rubén (1) (SAGE Publications Inc., 2020)
      Satellite images have a very high resolution, which make their automatic processing computationally costly, and they suffer from artifacts making their processing difficult. This paper describes a method for the effective ...
    • Energy efficiency maximization algorithm for underwater Mobile sensor networks 

      Pasupathi, Subbulakshmi; Vimal, S.; Harold Robinson, Yesudhas; Verdú, Elena (1); González-Crespo, Rubén (1) (Earth science informatics, 2021)
      Modern Underwater Wireless Sensor Networks (UWSN) would provide big administrations with numerous underwater surveying and technical applications, working in the unstable submerged deep-water conditions. A huge obstacle ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja