• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Energy efficiency maximization algorithm for underwater Mobile sensor networks

    Autor: 
    Pasupathi, Subbulakshmi
    ;
    Vimal, S.
    ;
    Harold Robinson, Yesudhas
    ;
    Verdú, Elena
    ;
    González-Crespo, Rubén
    Fecha: 
    2021
    Palabra clave: 
    AUV route devising; transmit assisted route devising; transmit path/route; underwater sensor networks; Scopus; JCR
    Revista / editorial: 
    Earth science informatics
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11590
    DOI: 
    https://doi.org/10.1007/s12145-020-00478-1
    Dirección web: 
    https://link.springer.com/article/10.1007/s12145-020-00478-1
    Resumen:
    Modern Underwater Wireless Sensor Networks (UWSN) would provide big administrations with numerous underwater surveying and technical applications, working in the unstable submerged deep-water conditions. A huge obstacle in these networks is the lifetime limit. The submerged correspondence frameworks mostly employ acoustic communication today. Acoustic interchange communication offers longer ranges that are yet limited by three variables: restricted and subordinate data transmission, time-differing multi-way engendering and low speed of sound. In this paper, an AUV (Autonomous Underwater Vehicle)-assisted acoustic correspondence convention, specifically Energy Efficiency Maximization Algorithm (EEMA) has been proposed to minimize the energy consumption. Underwater sensor networks depend on the hub ceaseless operation, the restricted correspondence transmission capacity and the hub lifetime, which entails difficulties in the operation of USWN. The proposed system will enhance the lifetime by lessening the number of bounces amid sensor transmissions, which fundamentally lessens time utilization and lifetime. Dynamic AUV ways and dynamic gateway assignments will enhance lifetime – proficiency balance proportion in the submerged system. To decrease the system energy utilization with an acceptable conveyance proportion is recommended. The Experimental results show that the proposed methodology has improved the level of energy compared with related techniques.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    41
    30
    62
    30
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT 

      Vimal, S.; Khari, Manju; Dey, Nilanjan; González-Crespo, Rubén ; Harold Robinson, Yesudhas (Computer Communications, 01/02/2020)
      The Mobile networks deploy and offers a multiaspective approach for various resource allocation paradigms and the service based options in the computing segments with its implication in the Industrial Internet of Things ...
    • Tree-based convolutional neural networks for object classification in segmented satellite images 

      Robinson, Y.H.; Vimal, S.; Khari, Manju; López Hernández, Fernando ; González-Crespo, Rubén (SAGE Publications Inc., 2020)
      Satellite images have a very high resolution, which make their automatic processing computationally costly, and they suffer from artifacts making their processing difficult. This paper describes a method for the effective ...
    • G-Sep: A Deep Learning Algorithm for Detection of Long-Term Sepsis Using Bidirectional Gated Recurrent Unit 

      Rajmohan, R.; Kumar, T. Ananth; Julie, E. Golden; Robinson, Y.H.; Vimal, S.; Kadry, Seifedine; González-Crespo, Rubén (International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2022)
      Sepsis is a common and deadly condition that must be treated eloquently within 19 hours. Numerous deep learning techniques, including Recurrent Neural Networks, Convolution Neural Networks, Long Short-Term Memory, and Gated ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja