• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Explainable prediction of chronic renal disease in the Colombian population using neural networks and case-based reasoning

    Autor: 
    Vásquez-Morales, Gabriel R.
    ;
    Martínez-Monterrubio, Sergio M.
    ;
    Moreno-Ger, Pablo
    ;
    Recio-García, Juan A.
    Fecha: 
    2019
    Palabra clave: 
    biological neural networks; diseases; training; data models; artificial intelligence; sociology; chronic kidney disease prediction; neural networks; case-based reasoning; twin systems; explainable AI; support vector machines; random forest; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/9925
    DOI: 
    https://doi.org/10.1109/ACCESS.2019.2948430
    Dirección web: 
    https://ieeexplore.ieee.org/document/8877828/citations
    Open Access
    Resumen:
    This paper presents a neural network-based classifier to predict whether a person is at risk of developing chronic kidney disease (CKD). The model is trained with the demographic data and medical care information of two population groups: on the one hand, people diagnosed with CKD in Colombia during 2018, and on the other, a sample of people without a diagnosis of this disease. Once the model is trained and evaluation metrics for classification algorithms are applied, the model achieves 95 accuracy in the test data set, making its application for disease prognosis feasible. However, despite the demonstrated efficiency of the neural networks to predict CKD, this machine-learning paradigm is opaque to the expert regarding the explanation of the outcome. Current research on eXplainable AI proposes the use of twin systems, where a black-box machine-learning method is complemented by another white-box method that provides explanations about the predicted values. Case-Based Reasoning (CBR) has proved to be an ideal complement as this paradigm is able to find explanatory cases for an explanation-by-example justification of a neural networks prediction. In this paper, we apply and validate a NN-CBR twin system for the explanation of CKD predictions. As a result of this research, 3,494,516 people were identified as being at risk of developing CKD in Colombia, or 7 of the total population.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    64
    54
    58
    18
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Agile development of multiplatform educational video games using a Domain-Specific Language 

      González García, Cristian; Núñez-Valdez, Edward Rolando; Moreno-Ger, Pablo ; González-Crespo, Rubén ; Pelayo G-Bustelo, B. Cristina; Cueva Lovelle, Juan Manuel (Universal Access in the Information Society, 25/07/2019)
      Educational video games are becoming an increasingly popular alternative in the academic field. However, video game development is a very complex task that requires programming skills and knowledge of multiple technologies, ...
    • Comparison of Clustering Algorithms for Learning Analytics with Educational Datasets 

      Martínez Navarro, Álvaro; Moreno-Ger, Pablo (International Journal of Interactive Multimedia and Artificial Intelligence, 09/2018)
      Learning Analytics is becoming a key tool for the analysis and improvement of digital education processes, and its potential benefit grows with the size of the student cohorts generating data. In the context of Open ...
    • Comparison of Clustering Algorithms for Learning Analytics with Educational Datasets 

      Martínez Navarro, Álvaro; Moreno-Ger, Pablo (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2018)
      Learning Analytics is becoming a key tool for the analysis and improvement of digital education processes, and its potential benefit grows with the size of the student cohorts generating data. In the context of Open ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja