• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    STEG-XAI: explainable steganalysis in images using neural networks

    Autor: 
    Kuchumova, Eugenia
    ;
    Martínez-Monterrubio, Sergio Mauricio
    ;
    Recio-Garcia, Juan A.
    Fecha: 
    2024
    Palabra clave: 
    Steganography; Steganalysis; neural networks; explainable artificial intelligence; Scopus; WOS
    Revista / editorial: 
    Multimedia Tools and Applications
    Citación: 
    Kuchumova, E., Martínez-Monterrubio, S.M. & Recio-Garcia, J.A. STEG-XAI: explainable steganalysis in images using neural networks. Multimed Tools Appl 83, 50601–50618 (2024). https://doi.org/10.1007/s11042-023-17483-3
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/16906
    DOI: 
    https://doi.org/10.1007/s11042-023-17483-3
    Dirección web: 
    https://link.springer.com/article/10.1007/s11042-023-17483-3#citeas
    Resumen:
    Multimedia content’s development and technological evolution have enhanced and even facilitated the application of steganography as a means to introduce hidden messages for cybercrime-related purposes. Artificial intelligence models have been widely implemented as a way to detect the presence of these messages in image content. However, the possibility of applying explainability techniques in order to provide visual representations of the signatures of different steganography algorithms has not been studied yet. This work presents a novel steganalysys methodology, STEG-XAI, not only for detecting steganography in images but also for explaining the machine learning model’s findings, and extracting the steganography algorithm’s signature. A convolutional neural network with EfficientNet architecture is implemented, along with the explainability algorithms LIME and Grad-CAM. The model is trained with a dataset of images modified by UERD, a steganography method designed for JPEG images, and achieves a weighted AUC of 0.944, displaying a high level of discrimination between original and tampered images. Furthermore, the explanation methods enable visualizing both the image modifications identified by the neural network, and a signature of the UERD algorithm.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    96
    155
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Explainable prediction of chronic renal disease in the Colombian population using neural networks and case-based reasoning 

      Vásquez-Morales, Gabriel R.; Martínez-Monterrubio, Sergio M.; Moreno-Ger, Pablo ; Recio-García, Juan A. (IEEE Access, 2019)
      This paper presents a neural network-based classifier to predict whether a person is at risk of developing chronic kidney disease (CKD). The model is trained with the demographic data and medical care information of two ...
    • Systematic review of SIEM technology: SIEM-SC birth 

      López Velásquez, Juan Miguel; Martínez Monterrubio, Sergio Mauricio; Sánchez Crespo, Luis Enrique; Garcia Rosado, David (2023)
      This paper contains a systematic review carried out to address the current status of the System Information and Event Management (SIEM) technology and what may possibly be the next steps in the future. We shall focus on: ...
    • Black Widow Crawler for TOR network to search for criminal patterns 

      Martinez Monterrubio, Sergio Mauricio ; Armas Naranjo, Joseph Eduardo ; Barona Lopez, Lorena Isabel; Valdivieso Caraguay, Angel Leonardo (Institute of Electrical and Electronics Engineers Inc., 2021)
      This work aims to develop the Black Widow crawler focused on the Tor network, which searches, analyzes, and indexes websites containing criminal patterns. Also, a comparison of the results of the Black Widow crawler with ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja