Mostrar el registro sencillo del ítem

dc.contributor.authorVásquez-Morales, Gabriel R.
dc.contributor.authorMartínez-Monterrubio, Sergio M.
dc.contributor.authorMoreno-Ger, Pablo
dc.contributor.authorRecio-García, Juan A.
dc.date2019
dc.date.accessioned2020-03-31T06:51:16Z
dc.date.available2020-03-31T06:51:16Z
dc.identifier.issn2169-3536
dc.identifier.urihttps://reunir.unir.net/handle/123456789/9925
dc.description.abstractThis paper presents a neural network-based classifier to predict whether a person is at risk of developing chronic kidney disease (CKD). The model is trained with the demographic data and medical care information of two population groups: on the one hand, people diagnosed with CKD in Colombia during 2018, and on the other, a sample of people without a diagnosis of this disease. Once the model is trained and evaluation metrics for classification algorithms are applied, the model achieves 95 accuracy in the test data set, making its application for disease prognosis feasible. However, despite the demonstrated efficiency of the neural networks to predict CKD, this machine-learning paradigm is opaque to the expert regarding the explanation of the outcome. Current research on eXplainable AI proposes the use of twin systems, where a black-box machine-learning method is complemented by another white-box method that provides explanations about the predicted values. Case-Based Reasoning (CBR) has proved to be an ideal complement as this paradigm is able to find explanatory cases for an explanation-by-example justification of a neural networks prediction. In this paper, we apply and validate a NN-CBR twin system for the explanation of CKD predictions. As a result of this research, 3,494,516 people were identified as being at risk of developing CKD in Colombia, or 7 of the total population.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Accesses_ES
dc.relation.ispartofseries;vol. 7
dc.relation.urihttps://ieeexplore.ieee.org/document/8877828/citationses_ES
dc.rightsopenAccesses_ES
dc.subjectbiological neural networkses_ES
dc.subjectdiseaseses_ES
dc.subjecttraininges_ES
dc.subjectdata modelses_ES
dc.subjectartificial intelligencees_ES
dc.subjectsociologyes_ES
dc.subjectchronic kidney disease predictiones_ES
dc.subjectneural networkses_ES
dc.subjectcase-based reasoninges_ES
dc.subjecttwin systemses_ES
dc.subjectexplainable AIes_ES
dc.subjectsupport vector machineses_ES
dc.subjectrandom forestes_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleExplainable prediction of chronic renal disease in the Colombian population using neural networks and case-based reasoninges_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2019.2948430


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem