• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Mathematical and Computational Models for Osseointegration in Titanium Dental Implants: A Systematic Review

    Autor: 
    Gandía-Sastre, Tomás
    ;
    Prados-Privado, María
    Fecha: 
    2025
    Palabra clave: 
    osseointegration; titanium dental implants; computational modelling; finite element analysis; mechanobiological models; artificial intelligence
    Revista / editorial: 
    The International journal of oral & maxillofacial implants
    Citación: 
    Gandía, T., & Prados-Privado, M. (2025). Mathematical and Computational Models for Osseointegration in Titanium Dental Implants: A Systematic Review of Current Approaches and Future Directions. The International journal of oral & maxillofacial implants, 0(0), 1–47. Advance online publication. https://doi.org/10.11607/jomi.11460
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/18891
    DOI: 
    https://doi.org/10.11607/jomi.11460
    Dirección web: 
    https://www.quintessence-publishing.com/usa/en/article/6472968/the-international-journal-of-oral-maxillofacial-implants/preprint/mathematical-and-computational-models-for-osseointegration-in-titanium-dental-implants-a-systematic-review-of-current-approaches-and-future-directions
    Resumen:
    Purpose: Mathematical and computational models play a fundamental role in understanding osseointegration in titanium dental implants, offering valuable insights into biomechanical behaviour, stress distribution, and implant stability. Materials and Methods: This systematic review examines current modelling approaches, including finite element analysis (FEA), mechanobiological frameworks, and reaction-diffusion models, assessing their effectiveness in predicting osseointegration dynamics. Despite these advancements, challenges persist in translating computational findings into clinical practice. Results: The lack of integrated models that simultaneously incorporate mechanical, biological, and biochemical factors limits the predictive accuracy of simulations. Additionally, variations in bone quality classification, implant designs, and loading conditions complicate reproducibility and standardization across studies. Personalized computational simulations, incorporating patient-specific bone properties and implant parameters, hold promise for optimizing treatment planning and improving clinical outcomes. Future research should prioritize hybrid modelling approaches that merge FEA with mechanobiological and reaction-diffusion frameworks, providing a more holistic perspective on osseointegration. Furthermore, integrating artificial intelligence and machine learning could enhance predictive accuracy by analysing large datasets and identifying complex patterns in implant behaviour. Conclusion: mathematical and computational models have significantly advanced our understanding of osseointegration in titanium dental implants. However, further refinements are needed to bridge the gap between theoretical predictions and real-world applications. By standardizing key parameters and integrating multidisciplinary modelling techniques, these tools can become more accessible and impactful in dental implantology, ultimately improving implant design, surgical planning, and patient-specific treatment strategies.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    2

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Integrating Finite Element Data with Neural Networks for Fatigue Prediction in Titanium Dental Implants: A Proof-of-Concept Study 

      Gandía-Sastre, Tomás; Prados-Privado, María (Applied Sciences, 2025)
      Background: Titanium dental implants are widely used, but their long-term mechanical reliability under fatigue loading remains a key concern. Traditional finite element analysis is accurate but computationally intensive. ...
    • Time-resolved prediction of dental implant biomechanics through integration of finite element analysis, osseointegration dynamics, and deep learning 

      Rodriguez-Molinero, Jesús; Prados-Privado, María (Journal of the Mechanical Behavior of Biomedical Materials, 2025)
      Background: Dental implant longevity depends on the complex interaction between mechanical stability and biological osseointegration. While finite element analysis (FEA) provides valuable mechanical insight, it remains static ...
    • COVID-19 Vaccination Improved Psychological Distress (Anxiety and Depression Scores) in Chronic Kidney Disease Patients: A Prospective Study 

      García Llana, Helena ; Gandia, Lorena; Orti, Marisa; Gimenez-Civera, Elena; Forquet, Claudia; D'Marco, Luis; Puchades, Maria Jesus; Sargsyan, Mari; Sanchis, Irina; Ribera, Carmen; Marco, Ma Ines; Ferra, Cristela Moncho; Perez-Baylach, Carmen Maria; Bonilla, Begona; Moncho Frances, Francesc; Perez-Bernat, Elisa; Sancho, Asuncion; Gorriz, Jose Luis (Vaccines, 2022)
      The purpose of the study is to analyze the impact of vaccination against SARS-CoV-2 on anxiety and depression scores in patients with different modalities of chronic kidney disease. One hundred and seventeen renal patients ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja