• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Time-resolved prediction of dental implant biomechanics through integration of finite element analysis, osseointegration dynamics, and deep learning

    Autor: 
    Rodriguez-Molinero, Jesús
    ;
    Prados-Privado, María
    Fecha: 
    2025
    Palabra clave: 
    dental implants; osseointegration; finite element analysis; deep learning; surrogate modeling; time-resolved biomechanics; bone remodeling
    Revista / editorial: 
    Journal of the Mechanical Behavior of Biomedical Materials
    Citación: 
    Rodriguez-Molinero, J., & Prados-Privado, M. (2026). Time-resolved prediction of dental implant biomechanics through integration of finite element analysis, osseointegration dynamics, and deep learning. Journal of the mechanical behavior of biomedical materials, 175, 107316. https://doi.org/10.1016/j.jmbbm.2025.107316
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/18890
    DOI: 
    https://doi.org/10.1016/j.jmbbm.2025.107316
    Dirección web: 
    https://www.sciencedirect.com/science/article/abs/pii/S1751616125004321?via%3Dihub
    Resumen:
    Background: Dental implant longevity depends on the complex interaction between mechanical stability and biological osseointegration. While finite element analysis (FEA) provides valuable mechanical insight, it remains static and computationally expensive. Objective: This study presents a hybrid time-resolved computational framework combining finite element data, osseointegration dynamics, and deep learning to predict the biomechanical behavior of titanium dental implants throughout the healing process. Methods: A parametric 3D FEA model simulated 800 implant–bone configurations varying in geometry, loading, and bone quality. A mechanobiological model of osseointegration described the monthly evolution of bone density, bone–implant contact (BIC), and interfacial stiffness over 12 months. These temporal variables were integrated into a hybrid Multilayer Perceptron – Long Short-Term Memory (MLP–LSTM) neural network — designed to capture both spatial and time-dependent features—trained to predict von Mises stress (σVM), maximum displacement (δmax), and fatigue safety factor (FSF, an indicator of long-term structural failure risk). Results: The model achieved R2 > 0.98 for all outputs and mean absolute errors <0.015. Temporal simulation revealed that interfacial stiffness increased by 270 %, while FSF declined nonlinearly with load above 200 N. Predictions were generated in <0.01 s per case, offering >4000 ×speed-up compared to conventional FEA. Conclusions: The framework captures both mechanical and biological evolution of the implant–bone interface, providing physiologically realistic, computationally efficient predictions. This approach represents a step toward personalized, AI-assisted implant design and load management. Clinically, this tool allows for rapid pre-surgical screening of implant designs against patient-specific risk factors. Limitations include the reliance on synthetic data derived from simplified bone geometries, static loading assumptions, and unvalidated mechanobiological parameters, necessitating future in vivo validation. These findings represent a computational proof-of-concept and require validation against patient-specific geometries and biological data before clinical adoption.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    7
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    2

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Efficacy of music therapy in the treatment of anxiety among children at social risk and those have committed child to parent violence 

      Pérez Eizaguirre, Miren; Dorado Barbé, Ana; Rodriguez-Brioso Perez, María del Mar; Privado, Jesús (SAGE Publications Ltd, 2022)
      The purpose of this research is to analyze the significant impact music therapy can have on a group of adolescents who have committed Child to Parent Violence and a second group of teenagers at social risk. Both groups ...
    • Mathematical and Computational Models for Osseointegration in Titanium Dental Implants: A Systematic Review 

      Gandía-Sastre, Tomás; Prados-Privado, María (The International journal of oral & maxillofacial implants, 2025)
      Purpose: Mathematical and computational models play a fundamental role in understanding osseointegration in titanium dental implants, offering valuable insights into biomechanical behaviour, stress distribution, and implant ...
    • Integrating Finite Element Data with Neural Networks for Fatigue Prediction in Titanium Dental Implants: A Proof-of-Concept Study 

      Gandía-Sastre, Tomás; Prados-Privado, María (Applied Sciences, 2025)
      Background: Titanium dental implants are widely used, but their long-term mechanical reliability under fatigue loading remains a key concern. Traditional finite element analysis is accurate but computationally intensive. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja