Mostrar el registro sencillo del ítem

dc.contributor.authorGandía-Sastre, Tomás
dc.contributor.authorPrados-Privado, María
dc.date2025
dc.date.accessioned2026-02-05T09:42:05Z
dc.date.available2026-02-05T09:42:05Z
dc.identifier.citationGandía, T., & Prados-Privado, M. (2025). Mathematical and Computational Models for Osseointegration in Titanium Dental Implants: A Systematic Review of Current Approaches and Future Directions. The International journal of oral & maxillofacial implants, 0(0), 1–47. Advance online publication. https://doi.org/10.11607/jomi.11460es_ES
dc.identifier.issn0882-2786
dc.identifier.issn1942-4434
dc.identifier.urihttps://reunir.unir.net/handle/123456789/18891
dc.description.abstractPurpose: Mathematical and computational models play a fundamental role in understanding osseointegration in titanium dental implants, offering valuable insights into biomechanical behaviour, stress distribution, and implant stability. Materials and Methods: This systematic review examines current modelling approaches, including finite element analysis (FEA), mechanobiological frameworks, and reaction-diffusion models, assessing their effectiveness in predicting osseointegration dynamics. Despite these advancements, challenges persist in translating computational findings into clinical practice. Results: The lack of integrated models that simultaneously incorporate mechanical, biological, and biochemical factors limits the predictive accuracy of simulations. Additionally, variations in bone quality classification, implant designs, and loading conditions complicate reproducibility and standardization across studies. Personalized computational simulations, incorporating patient-specific bone properties and implant parameters, hold promise for optimizing treatment planning and improving clinical outcomes. Future research should prioritize hybrid modelling approaches that merge FEA with mechanobiological and reaction-diffusion frameworks, providing a more holistic perspective on osseointegration. Furthermore, integrating artificial intelligence and machine learning could enhance predictive accuracy by analysing large datasets and identifying complex patterns in implant behaviour. Conclusion: mathematical and computational models have significantly advanced our understanding of osseointegration in titanium dental implants. However, further refinements are needed to bridge the gap between theoretical predictions and real-world applications. By standardizing key parameters and integrating multidisciplinary modelling techniques, these tools can become more accessible and impactful in dental implantology, ultimately improving implant design, surgical planning, and patient-specific treatment strategies.es_ES
dc.language.isoenges_ES
dc.publisherThe International journal of oral & maxillofacial implantses_ES
dc.relation.urihttps://www.quintessence-publishing.com/usa/en/article/6472968/the-international-journal-of-oral-maxillofacial-implants/preprint/mathematical-and-computational-models-for-osseointegration-in-titanium-dental-implants-a-systematic-review-of-current-approaches-and-future-directionses_ES
dc.rightsrestrictedAccesses_ES
dc.subjectosseointegrationes_ES
dc.subjecttitanium dental implantses_ES
dc.subjectcomputational modellinges_ES
dc.subjectfinite element analysises_ES
dc.subjectmechanobiological modelses_ES
dc.subjectartificial intelligencees_ES
dc.titleMathematical and Computational Models for Osseointegration in Titanium Dental Implants: A Systematic Reviewes_ES
dc.typearticlees_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.11607/jomi.11460


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem