• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Integrating Finite Element Data with Neural Networks for Fatigue Prediction in Titanium Dental Implants: A Proof-of-Concept Study

    Autor: 
    Gandía-Sastre, Tomás
    ;
    Prados-Privado, María
    Fecha: 
    2025
    Palabra clave: 
    dental implants; finite element analysis; neural network model; fatigue prediction; data integration
    Revista / editorial: 
    Applied Sciences
    Citación: 
    Gandía-Sastre, T., & Prados-Privado, M. (2025). Integrating Finite Element Data with Neural Networks for Fatigue Prediction in Titanium Dental Implants: A Proof-of-Concept Study. Applied Sciences, 15(19), 10362. https://doi.org/10.3390/app151910362
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/18887
    DOI: 
    https://doi.org/10.3390/app151910362
    Dirección web: 
    https://www.mdpi.com/2076-3417/15/19/10362
    Open Access
    Resumen:
    Background: Titanium dental implants are widely used, but their long-term mechanical reliability under fatigue loading remains a key concern. Traditional finite element analysis is accurate but computationally intensive. This study explores the integration of finite element analysis data with neural networks to predict fatigue-related responses efficiently. Methods: A dataset of 200 finite element analysis simulations was generated, varying load intensity, load angle, and implant size. Each simulation provided three outputs: maximum von Mises stress, maximum displacement, and fatigue safety factor. A feedforward neural network with two hidden layers (64 neurons each, ReLU activation) was trained using 160 simulations, with 40 reserved for testing. Results: The neural network achieved high accuracy across all outputs, with R2 values of 0.97 for stress, 0.95 for deformation, and 0.92 for the fatigue safety factor. Mean errors across the test set were below 5%, indicat- ing strong predictive performance under diverse conditions. Conclusions: The findings demonstrate that neural networks can reliably replicate finite element analysis outcomes with significantly reduced computational time. This approach offers a promising tool for accelerating implant assessment and supports the growing role of AI in biomechanical design and analysis.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: 2025 Integrating Finite Element Data with Neural Networks for.pdf
    Tamaño: 981.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    10
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    3

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Mathematical and Computational Models for Osseointegration in Titanium Dental Implants: A Systematic Review 

      Gandía-Sastre, Tomás; Prados-Privado, María (The International journal of oral & maxillofacial implants, 2025)
      Purpose: Mathematical and computational models play a fundamental role in understanding osseointegration in titanium dental implants, offering valuable insights into biomechanical behaviour, stress distribution, and implant ...
    • Time-resolved prediction of dental implant biomechanics through integration of finite element analysis, osseointegration dynamics, and deep learning 

      Rodriguez-Molinero, Jesús; Prados-Privado, María (Journal of the Mechanical Behavior of Biomedical Materials, 2025)
      Background: Dental implant longevity depends on the complex interaction between mechanical stability and biological osseointegration. While finite element analysis (FEA) provides valuable mechanical insight, it remains static ...
    • COVID-19 Vaccination Improved Psychological Distress (Anxiety and Depression Scores) in Chronic Kidney Disease Patients: A Prospective Study 

      García Llana, Helena ; Gandia, Lorena; Orti, Marisa; Gimenez-Civera, Elena; Forquet, Claudia; D'Marco, Luis; Puchades, Maria Jesus; Sargsyan, Mari; Sanchis, Irina; Ribera, Carmen; Marco, Ma Ines; Ferra, Cristela Moncho; Perez-Baylach, Carmen Maria; Bonilla, Begona; Moncho Frances, Francesc; Perez-Bernat, Elisa; Sancho, Asuncion; Gorriz, Jose Luis (Vaccines, 2022)
      The purpose of the study is to analyze the impact of vaccination against SARS-CoV-2 on anxiety and depression scores in patients with different modalities of chronic kidney disease. One hundred and seventeen renal patients ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja