Mostrar el registro sencillo del ítem

dc.contributor.authorRodriguez-Molinero, Jesús
dc.contributor.authorPrados-Privado, María
dc.date2025
dc.date.accessioned2026-02-05T09:34:01Z
dc.date.available2026-02-05T09:34:01Z
dc.identifier.citationRodriguez-Molinero, J., & Prados-Privado, M. (2026). Time-resolved prediction of dental implant biomechanics through integration of finite element analysis, osseointegration dynamics, and deep learning. Journal of the mechanical behavior of biomedical materials, 175, 107316. https://doi.org/10.1016/j.jmbbm.2025.107316es_ES
dc.identifier.issn1751-6161
dc.identifier.issn1878-0180
dc.identifier.urihttps://reunir.unir.net/handle/123456789/18890
dc.description.abstractBackground: Dental implant longevity depends on the complex interaction between mechanical stability and biological osseointegration. While finite element analysis (FEA) provides valuable mechanical insight, it remains static and computationally expensive. Objective: This study presents a hybrid time-resolved computational framework combining finite element data, osseointegration dynamics, and deep learning to predict the biomechanical behavior of titanium dental implants throughout the healing process. Methods: A parametric 3D FEA model simulated 800 implant–bone configurations varying in geometry, loading, and bone quality. A mechanobiological model of osseointegration described the monthly evolution of bone density, bone–implant contact (BIC), and interfacial stiffness over 12 months. These temporal variables were integrated into a hybrid Multilayer Perceptron – Long Short-Term Memory (MLP–LSTM) neural network — designed to capture both spatial and time-dependent features—trained to predict von Mises stress (σVM), maximum displacement (δmax), and fatigue safety factor (FSF, an indicator of long-term structural failure risk). Results: The model achieved R2 > 0.98 for all outputs and mean absolute errors <0.015. Temporal simulation revealed that interfacial stiffness increased by 270 %, while FSF declined nonlinearly with load above 200 N. Predictions were generated in <0.01 s per case, offering >4000 ×speed-up compared to conventional FEA. Conclusions: The framework captures both mechanical and biological evolution of the implant–bone interface, providing physiologically realistic, computationally efficient predictions. This approach represents a step toward personalized, AI-assisted implant design and load management. Clinically, this tool allows for rapid pre-surgical screening of implant designs against patient-specific risk factors. Limitations include the reliance on synthetic data derived from simplified bone geometries, static loading assumptions, and unvalidated mechanobiological parameters, necessitating future in vivo validation. These findings represent a computational proof-of-concept and require validation against patient-specific geometries and biological data before clinical adoption.es_ES
dc.language.isoenges_ES
dc.publisherJournal of the Mechanical Behavior of Biomedical Materialses_ES
dc.relation.ispartofseries;vol. 175, nº
dc.relation.urihttps://www.sciencedirect.com/science/article/abs/pii/S1751616125004321?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectdental implantses_ES
dc.subjectosseointegrationes_ES
dc.subjectfinite element analysises_ES
dc.subjectdeep learninges_ES
dc.subjectsurrogate modelinges_ES
dc.subjecttime-resolved biomechanicses_ES
dc.subjectbone remodelinges_ES
dc.titleTime-resolved prediction of dental implant biomechanics through integration of finite element analysis, osseointegration dynamics, and deep learninges_ES
dc.typearticlees_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.1016/j.jmbbm.2025.107316


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem