Mostrar el registro sencillo del ítem

dc.contributor.authorGandía-Sastre, Tomás
dc.contributor.authorPrados-Privado, María
dc.date2025
dc.date.accessioned2026-02-04T12:21:19Z
dc.date.available2026-02-04T12:21:19Z
dc.identifier.citationGandía-Sastre, T., & Prados-Privado, M. (2025). Integrating Finite Element Data with Neural Networks for Fatigue Prediction in Titanium Dental Implants: A Proof-of-Concept Study. Applied Sciences, 15(19), 10362. https://doi.org/10.3390/app151910362es_ES
dc.identifier.issn2076-3417
dc.identifier.urihttps://reunir.unir.net/handle/123456789/18887
dc.description.abstractBackground: Titanium dental implants are widely used, but their long-term mechanical reliability under fatigue loading remains a key concern. Traditional finite element analysis is accurate but computationally intensive. This study explores the integration of finite element analysis data with neural networks to predict fatigue-related responses efficiently. Methods: A dataset of 200 finite element analysis simulations was generated, varying load intensity, load angle, and implant size. Each simulation provided three outputs: maximum von Mises stress, maximum displacement, and fatigue safety factor. A feedforward neural network with two hidden layers (64 neurons each, ReLU activation) was trained using 160 simulations, with 40 reserved for testing. Results: The neural network achieved high accuracy across all outputs, with R2 values of 0.97 for stress, 0.95 for deformation, and 0.92 for the fatigue safety factor. Mean errors across the test set were below 5%, indicat- ing strong predictive performance under diverse conditions. Conclusions: The findings demonstrate that neural networks can reliably replicate finite element analysis outcomes with significantly reduced computational time. This approach offers a promising tool for accelerating implant assessment and supports the growing role of AI in biomechanical design and analysis.es_ES
dc.language.isoenges_ES
dc.publisherApplied Scienceses_ES
dc.relation.ispartofseries;vol. 15, nº 19
dc.relation.urihttps://www.mdpi.com/2076-3417/15/19/10362es_ES
dc.rightsopenAccesses_ES
dc.subjectdental implantses_ES
dc.subjectfinite element analysises_ES
dc.subjectneural network modeles_ES
dc.subjectfatigue predictiones_ES
dc.subjectdata integrationes_ES
dc.titleIntegrating Finite Element Data with Neural Networks for Fatigue Prediction in Titanium Dental Implants: A Proof-of-Concept Studyes_ES
dc.typearticlees_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.3390/app151910362


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem