Mostrar el registro sencillo del ítem

dc.contributor.authorSarmiento, Ricardo
dc.contributor.authorde la Cruz Echeandía, Marina
dc.contributor.authorOrtega de la Puente, Alfonso
dc.contributor.authorBaena-Gallé, Roberto
dc.contributor.authorGirard, Terrence
dc.contributor.authorCasetti-Dinescu, Dana
dc.contributor.authorCervantes-Rovira, Alejandro
dc.date2024
dc.date.accessioned2026-01-28T12:24:09Z
dc.date.available2026-01-28T12:24:09Z
dc.identifier.citationRicardo Sarmiento, Marina De La Cruz, Alfonso Ortega, Roberto Baena-Galle, Terrence M. Girard, Dana I. Casetti-Dinescu, and Alejandro Cervantes. 2024. Grammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope images. In Proceedings of the 13th ACM/IEEE International Workshop on Genetic Improvement (GI '24). Association for Computing Machinery, New York, NY, USA, 13–20. https://doi.org/10.1145/3643692.3648264es_ES
dc.identifier.urihttps://reunir.unir.net/handle/123456789/18847
dc.description.abstractSymbolic regression, in general, and genetic models, in particular, are promising approaches to mathematical modeling in astrometry where it is not always clear which is the fittest analytic expression depending on the problem under consideration. Several attempts and increasing research efforts are being made in this direction mainly from the Genetic Programming (GP) viewpoint. Our proposal is, as far as we know, the first one to apply Grammatical Evolution (GE) in this domain. GE (and further GE extensions) aim to outperform GP limitations by incorporating formal languages tools to guarantee the correctness (both syntactic and semantic) of the generated expressions. The current contribution is a first proof to check the viability of GE on astrometric real datasets. Its success in finding adequate parameters for predefined families of functions in star centering (Gaussian and Moffat PSFs) with simple and naive GE experiments supports our hypothesis on taking advantage of the expressive power of GE to tackle astrometry scenarios of interest and hence greatly improve current astrometric software thanks to specific genetic approaches.es_ES
dc.language.isoenges_ES
dc.relation.urihttps://dl.acm.org/doi/10.1145/3643692.3648264es_ES
dc.rightsopenAccesses_ES
dc.subjectgrammatical evolutiones_ES
dc.subjectsymbolic regressiones_ES
dc.subjectastrometryes_ES
dc.subjectWFPC2es_ES
dc.subjectHubble Space Telescopees_ES
dc.titleGrammar evolution and symbolic regression for astrometric centering of Hubble Space Telescope imageses_ES
dc.typeconferenceObjectes_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.1145/3643692.3648264


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem