• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Probabilistic Forecasting Model for the COVID-19 Pandemic Based on the Composite Monte Carlo Model Integrated with Deep Learning and Fuzzy System

    Autor: 
    James Fong, Simon
    ;
    Lobo Marques, João Alexandre
    ;
    Li, G.
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    ;
    Herrera-Viedma, Enrique
    ;
    Bernardo Gois, F. Nauber
    ;
    Xavier Neto, José
    Fecha: 
    2022
    Palabra clave: 
    Composite Monte Carlo simulation; COVID-19; healthcare decision-making systems; prediction; Scopus(2)
    Revista / editorial: 
    Epidemic Analytics for Decision Supports in COVID19 Crisis
    Citación: 
    Fong, S.J. et al. (2022). Probabilistic Forecasting Model for the COVID-19 Pandemic Based on the Composite Monte Carlo Model Integrated with Deep Learning and Fuzzy System. In: Marques, J.A.L., Fong, S.J. (eds) Epidemic Analytics for Decision Supports in COVID19 Crisis. Springer, Cham. https://doi.org/10.1007/978-3-030-95281-5_4
    Tipo de Ítem: 
    bookPart
    URI: 
    https://reunir.unir.net/handle/123456789/15267
    DOI: 
    https://doi.org/10.1007/978-3-030-95281-5_4
    Dirección web: 
    https://link.springer.com/chapter/10.1007/978-3-030-95281-5_4
    Resumen:
    There are several techniques to support simulation of time series behavior. In this chapter, the approach will be based on the Composite Monte Carlo (CMC) simulation method. This method is able to model future outcomes of time series under analysis from the available data. The establishment of multiple correlations and causality between the data allows modeling the variables and probabilistic distributions and subsequently obtaining also probabilistic results for time series forecasting. To improve the predictor efficiency, computational intelligence techniques are proposed, including a fuzzy inference system and an Artificial Neural Network architecture. This type of model is suitable to be considered not only for the disease monitoring and compartmental classes, but also for managerial data such as clinical resources, medical and health team allocation, and bed management, which are data related to complex decision-making challenges.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    25
    58
    116
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • The Application of Supervised and Unsupervised Computational Predictive Models to Simulate the COVID19 Pandemic 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      The application of different tools for predicting COVID19 cases spreading has been widely considered during the pandemic. Comparing different approaches is essential to analyze performance and the practical support they ...
    • Analysis of the COVID19 Pandemic Behaviour Based on the Compartmental SEAIRD and Adaptive SVEAIRD Epidemiologic Models 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      A significant number of people infected by COVID19 do not get sick immediately but become carriers of the disease. These patients might have a certain incubation period. However, the classical compartmental model, SEIR, ...
    • The Comparison of Different Linear and Nonlinear Models Using Preliminary Data to Efficiently Analyze the COVID-19 Outbreak 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      The COVID-19 pandemic spread generated an urgent need for computational systems to model its behavior and support governments and healthcare teams to make proper decisions. There are not many cases of global pandemics in ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja