• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    The Application of Supervised and Unsupervised Computational Predictive Models to Simulate the COVID19 Pandemic

    Autor: 
    James Fong, Simon
    ;
    Lobo Marques, João Alexandre
    ;
    Li, G.
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    ;
    Herrera-Viedma, Enrique
    ;
    Bernardo Gois, F. Nauber
    ;
    Xavier Neto, José
    Fecha: 
    2022
    Palabra clave: 
    ANN predictor; COVID19; Epidemiology; Fuzzy predictor; PID control; SEAIRD; Scopus(2)
    Revista / editorial: 
    Epidemic Analytics for Decision Supports in COVID19 Crisis
    Citación: 
    Fong, S.J. et al. (2022). The Application of Supervised and Unsupervised Computational Predictive Models to Simulate the COVID19 Pandemic. In: Marques, J.A.L., Fong, S.J. (eds) Epidemic Analytics for Decision Supports in COVID19 Crisis. Springer, Cham. https://doi.org/10.1007/978-3-030-95281-5_5
    Tipo de Ítem: 
    bookPart
    URI: 
    https://reunir.unir.net/handle/123456789/15268
    DOI: 
    https://doi.org/10.1007/978-3-030-95281-5_5
    Dirección web: 
    https://link.springer.com/chapter/10.1007/978-3-030-95281-5_5
    Resumen:
    The application of different tools for predicting COVID19 cases spreading has been widely considered during the pandemic. Comparing different approaches is essential to analyze performance and the practical support they can provide for the current pandemic management. This work proposes using the susceptible-exposed-asymptomatic but infectious-symptomatic and infectious-recovered-deceased (SEAIRD) model for different learning models. The first analysis considers an unsupervised prediction, based directly on the epidemiologic compartmental model. After that, two supervised learning models are considered integrating computational intelligence techniques and control engineering: the fuzzy-PID and the wavelet-ANN-PID models. The purpose is to compare different predictor strategies to validate a viable predictive control system for the COVID19 relevant epidemiologic time series. For each model, after setting the initial conditions for each parameter, the prediction performance is calculated based on the presented data. The use of PID controllers is justified to avoid divergence in the system when the learning process is conducted. The wavelet neural network solution is considered here because of its rapid convergence rate. The proposed solutions are dynamic and can be adjusted and corrected in real time, according to the output error. The results are presented in each subsection of the chapter.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    18
    76
    71
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Analysis of the COVID19 Pandemic Behaviour Based on the Compartmental SEAIRD and Adaptive SVEAIRD Epidemiologic Models 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      A significant number of people infected by COVID19 do not get sick immediately but become carriers of the disease. These patients might have a certain incubation period. However, the classical compartmental model, SEIR, ...
    • The Comparison of Different Linear and Nonlinear Models Using Preliminary Data to Efficiently Analyze the COVID-19 Outbreak 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      The COVID-19 pandemic spread generated an urgent need for computational systems to model its behavior and support governments and healthcare teams to make proper decisions. There are not many cases of global pandemics in ...
    • Probabilistic Forecasting Model for the COVID-19 Pandemic Based on the Composite Monte Carlo Model Integrated with Deep Learning and Fuzzy System 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      There are several techniques to support simulation of time series behavior. In this chapter, the approach will be based on the Composite Monte Carlo (CMC) simulation method. This method is able to model future outcomes of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja