Mostrar el registro sencillo del ítem

dc.contributor.authorJames Fong, Simon
dc.contributor.authorLobo Marques, João Alexandre
dc.contributor.authorLi, G.
dc.contributor.authorDey, Nilanjan
dc.contributor.authorGonzález-Crespo, Rubén
dc.contributor.authorHerrera-Viedma, Enrique
dc.contributor.authorBernardo Gois, F. Nauber
dc.contributor.authorXavier Neto, José
dc.date2022
dc.date.accessioned2023-09-13T15:38:31Z
dc.date.available2023-09-13T15:38:31Z
dc.identifier.citationFong, S.J. et al. (2022). Probabilistic Forecasting Model for the COVID-19 Pandemic Based on the Composite Monte Carlo Model Integrated with Deep Learning and Fuzzy System. In: Marques, J.A.L., Fong, S.J. (eds) Epidemic Analytics for Decision Supports in COVID19 Crisis. Springer, Cham. https://doi.org/10.1007/978-3-030-95281-5_4es_ES
dc.identifier.isbn9783030952815
dc.identifier.urihttps://reunir.unir.net/handle/123456789/15267
dc.description.abstractThere are several techniques to support simulation of time series behavior. In this chapter, the approach will be based on the Composite Monte Carlo (CMC) simulation method. This method is able to model future outcomes of time series under analysis from the available data. The establishment of multiple correlations and causality between the data allows modeling the variables and probabilistic distributions and subsequently obtaining also probabilistic results for time series forecasting. To improve the predictor efficiency, computational intelligence techniques are proposed, including a fuzzy inference system and an Artificial Neural Network architecture. This type of model is suitable to be considered not only for the disease monitoring and compartmental classes, but also for managerial data such as clinical resources, medical and health team allocation, and bed management, which are data related to complex decision-making challenges.es_ES
dc.language.isoenges_ES
dc.publisherEpidemic Analytics for Decision Supports in COVID19 Crisises_ES
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-030-95281-5_4es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectComposite Monte Carlo simulationes_ES
dc.subjectCOVID-19es_ES
dc.subjecthealthcare decision-making systemses_ES
dc.subjectpredictiones_ES
dc.subjectScopus(2)es_ES
dc.titleProbabilistic Forecasting Model for the COVID-19 Pandemic Based on the Composite Monte Carlo Model Integrated with Deep Learning and Fuzzy Systemes_ES
dc.typebookPartes_ES
reunir.tag~es_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-030-95281-5_4


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem