• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Analysis of the COVID19 Pandemic Behaviour Based on the Compartmental SEAIRD and Adaptive SVEAIRD Epidemiologic Models

    Autor: 
    James Fong, Simon
    ;
    Lobo Marques, João Alexandre
    ;
    Li, G.
    ;
    Dey, Nilanjan
    ;
    González-Crespo, Rubén
    ;
    Herrera-Viedma, Enrique
    ;
    Bernardo Gois, F. Nauber
    ;
    Xavier Neto, José
    Fecha: 
    2022
    Palabra clave: 
    adaptive SEAIRD model; adaptive SVEAIRD model; asymptomatic cases; prediction models; Scopus(2)
    Revista / editorial: 
    Epidemic Analytics for Decision Supports in COVID19 Crisis
    Citación: 
    Fong, S.J. et al. (2022). Analysis of the COVID19 Pandemic Behaviour Based on the Compartmental SEAIRD and Adaptive SVEAIRD Epidemiologic Models. In: Marques, J.A.L., Fong, S.J. (eds) Epidemic Analytics for Decision Supports in COVID19 Crisis. Springer, Cham. https://doi.org/10.1007/978-3-030-95281-5_2
    Tipo de Ítem: 
    bookPart
    URI: 
    https://reunir.unir.net/handle/123456789/15265
    DOI: 
    https://doi.org/10.1007/978-3-030-95281-5_2
    Dirección web: 
    https://link.springer.com/chapter/10.1007/978-3-030-95281-5_2
    Resumen:
    A significant number of people infected by COVID19 do not get sick immediately but become carriers of the disease. These patients might have a certain incubation period. However, the classical compartmental model, SEIR, was not originally designed for COVID19. We used the simple, commonly used SEIR model to retrospectively analyse the initial pandemic data from Singapore. Here, the SEIR model was combined with the actual published Singapore pandemic data, and the key parameters were determined by maximizing the nonlinear goodness of fit R2 and minimizing the root mean square error. These parameters served for the fast and directional convergence of the parameters of an improved model. To cover the quarantine and asymptomatic variables, the existing SEIR model was extended to an infectious disease model with a greater number of population compartments, and with parameter values that were tuned adaptively by solving the nonlinear dynamics equations over the available pandemic data, as well as referring to previous experience with SARS. The contribution presented in this paper is a new model called the adaptive SEAIRD model; it considers the new characteristics of COVID19 and is therefore applicable to a population including asymptomatic carriers. The predictive value is enhanced by tuning of the optimal parameters, whose values better reflect the current pandemic.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    28
    62
    163
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • The Application of Supervised and Unsupervised Computational Predictive Models to Simulate the COVID19 Pandemic 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      The application of different tools for predicting COVID19 cases spreading has been widely considered during the pandemic. Comparing different approaches is essential to analyze performance and the practical support they ...
    • The Comparison of Different Linear and Nonlinear Models Using Preliminary Data to Efficiently Analyze the COVID-19 Outbreak 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      The COVID-19 pandemic spread generated an urgent need for computational systems to model its behavior and support governments and healthcare teams to make proper decisions. There are not many cases of global pandemics in ...
    • Probabilistic Forecasting Model for the COVID-19 Pandemic Based on the Composite Monte Carlo Model Integrated with Deep Learning and Fuzzy System 

      James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
      There are several techniques to support simulation of time series behavior. In this chapter, the approach will be based on the Composite Monte Carlo (CMC) simulation method. This method is able to model future outcomes of ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja