• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Hamilton–Jacobi theory and integrability for autonomous and non-autonomous contact systems

    Autor: 
    de León, Manuel
    ;
    Lainz, Manuel
    ;
    López-Gordón, Asier
    ;
    Rivas, Xavier
    Fecha: 
    2023
    Palabra clave: 
    complete solutions; contact Hamiltonian systems; Hamilton–Jacobi equation; integrability; Scopus; JCR
    Revista / editorial: 
    Journal of Geometry and Physics
    Citación: 
    de León, M., Lainz, M., López-Gordón, A., & Rivas, X. (2023). Hamilton–Jacobi theory and integrability for autonomous and non-autonomous contact systems. Journal of Geometry and Physics, 187, 104787.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15027
    DOI: 
    https://doi.org/10.1016/j.geomphys.2023.104787
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S0393044023000396?via%3Dihub
    Open Access
    Resumen:
    In this paper, we study the integrability of contact Hamiltonian systems, both time-dependent and independent. In order to do so, we construct a Hamilton–Jacobi theory for these systems following two approaches, obtaining two different Hamilton–Jacobi equations. Compared to conservative Hamiltonian systems, contact Hamiltonian systems depend of one additional parameter. The fact of obtaining two equations reflects whether we are looking for solutions depending on this additional parameter or not. In order to illustrate the theory developed in this paper, we study three examples: the free particle with a linear external force, the freely falling particle with linear dissipation and the damped and forced harmonic oscillator.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Hamilton_Jacobi_theory_and_integrability_for_autonomous_and_non_autonomous_contact_systems.pdf
    Tamaño: 518.1Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    37
    122
    108
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    53
    119
    339

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Symmetries, Conservation and Dissipation in Time-Dependent Contact Systems 

      Gaset, Jordi; López-Gordón, Asier; Rivas, Xavier (Fortschritte der Physik, 2023)
      In contact Hamiltonian systems, the so-called dissipated quantities are akin to conserved quantities in classical Hamiltonian systems. In this article, a Noether's theorem for non-autonomous contact Hamiltonian systems is ...
    • Time-dependent contact mechanics 

      de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)
      Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ...
    • Multicontact formulation for non-conservative field theories 

      de León, Manuel; Gaset, Jordi; Muñoz-Lecanda, Miguel C.; Rivas, Xavier; Román-Roy, Narciso (Journal of Physics A: Mathematical and Theoretical, 2023)
      A new geometric structure inspired by multisymplectic and contact geometries, which we call multicontact structure, is developed to describe non-conservative classical field theories. Using the differential forms that ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja