Time-dependent contact mechanics
Autor:
de León, Manuel
; Gaset, Jordi
; Gràcia, Xavier
; Muñoz-Lecanda, Miguel C.
; Rivas, Xavier
Fecha:
2023Palabra clave:
Revista / editorial:
Monatshefte fur MathematikCitación:
de León, M., Gaset, J., Gràcia, X. et al. Time-dependent contact mechanics. Monatsh Math (2022). https://doi.org/10.1007/s00605-022-01767-1Tipo de Ítem:
Articulo Revista IndexadaDirección web:
https://link.springer.com/article/10.1007/s00605-022-01767-1Resumen:
Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this setting we develop the Hamiltonian and Lagrangian formalisms, both in the regular and singular cases. In the singular case, we present a constraint algorithm aiming to find a submanifold where solutions exist. As a particular case we study contact systems with holonomic time-dependent constraints. Some regular and singular examples are analyzed, along with numerical simulations.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
53 |
86 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
11 |
30 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Multicontact formulation for non-conservative field theories
de León, Manuel; Gaset, Jordi; Muñoz-Lecanda, Miguel C.; Rivas, Xavier; Román-Roy, Narciso (Journal of Physics A: Mathematical and Theoretical, 2023)A new geometric structure inspired by multisymplectic and contact geometries, which we call multicontact structure, is developed to describe non-conservative classical field theories. Using the differential forms that ... -
Symmetries, Conservation and Dissipation in Time-Dependent Contact Systems
Gaset, Jordi; López-Gordón, Asier; Rivas, Xavier (Fortschritte der Physik, 2023)In contact Hamiltonian systems, the so-called dissipated quantities are akin to conserved quantities in classical Hamiltonian systems. In this article, a Noether's theorem for non-autonomous contact Hamiltonian systems is ... -
Inverse problem and equivalent contact systems
de León, Manuel; Gaset, Jordi ; Lainz, Manuel (Journal of Geometry and Physics, 2022)We present several results on the inverse problem and equivalent contact Lagrangian systems. These problems naturally lead to consider smooth transformations on the z variable (i.e., reparametrizations of the action). We ...