Multicontact formulation for non-conservative field theories
Autor:
de León, Manuel
; Gaset, Jordi
; Muñoz-Lecanda, Miguel C.
; Rivas, Xavier
; Román-Roy, Narciso
Fecha:
2023Palabra clave:
Revista / editorial:
Journal of Physics A: Mathematical and TheoreticalCitación:
Manuel de León et al 2023 J. Phys. A: Math. Theor. 56 025201 DOI 10.1088/1751-8121/acb575Tipo de Ítem:
Articulo Revista IndexadaDirección web:
https://iopscience.iop.org/article/10.1088/1751-8121/acb575Resumen:
A new geometric structure inspired by multisymplectic and contact geometries, which we call multicontact structure, is developed to describe non-conservative classical field theories. Using the differential forms that define this multicontact structure as well as other geometric elements that are derived from them while assuming certain conditions, we can introduce, on the multicontact manifolds, the variational field equations which are stated using sections, multivector fields, and Ehresmann connections on the adequate fiber bundles. Furthermore, it is shown how this multicontact framework can be adapted to the jet bundle description of classical field theories; the field equations are stated in the Lagrangian and the Hamiltonian formalisms both in the regular and the singular cases.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
19 |
91 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Time-dependent contact mechanics
de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ... -
Reduction and reconstruction of multisymplectic Lie systems
Lucas, Javier de; Gracia, Xavier; Rivas, Xavier; Román-Roy, Narciso; Vilariño, Silvia (Journal of Physics A: Mathematical and Theoretical, 07/2022)A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, ... -
Symmetries, Conservation and Dissipation in Time-Dependent Contact Systems
Gaset, Jordi; López-Gordón, Asier; Rivas, Xavier (Fortschritte der Physik, 2023)In contact Hamiltonian systems, the so-called dissipated quantities are akin to conserved quantities in classical Hamiltonian systems. In this article, a Noether's theorem for non-autonomous contact Hamiltonian systems is ...