• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Multicontact formulation for non-conservative field theories

    Autor: 
    de León, Manuel
    ;
    Gaset, Jordi
    ;
    Muñoz-Lecanda, Miguel C.
    ;
    Rivas, Xavier
    ;
    Román-Roy, Narciso
    Fecha: 
    2023
    Palabra clave: 
    classical field theory; contact structure; Lagrangian and Hamiltonian formalism; multisymplectic structure; non-conservative system; Scopus; JCR
    Revista / editorial: 
    Journal of Physics A: Mathematical and Theoretical
    Citación: 
    Manuel de León et al 2023 J. Phys. A: Math. Theor. 56 025201 DOI 10.1088/1751-8121/acb575
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15240
    DOI: 
    https://doi.org/10.1088/1751-8121/acb575
    Dirección web: 
    https://iopscience.iop.org/article/10.1088/1751-8121/acb575
    Resumen:
    A new geometric structure inspired by multisymplectic and contact geometries, which we call multicontact structure, is developed to describe non-conservative classical field theories. Using the differential forms that define this multicontact structure as well as other geometric elements that are derived from them while assuming certain conditions, we can introduce, on the multicontact manifolds, the variational field equations which are stated using sections, multivector fields, and Ehresmann connections on the adequate fiber bundles. Furthermore, it is shown how this multicontact framework can be adapted to the jet bundle description of classical field theories; the field equations are stated in the Lagrangian and the Hamiltonian formalisms both in the regular and the singular cases.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    19
    91
    80
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    1

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Time-dependent contact mechanics 

      de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)
      Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ...
    • Reduction and reconstruction of multisymplectic Lie systems 

      Lucas, Javier de; Gracia, Xavier; Rivas, Xavier; Román-Roy, Narciso; Vilariño, Silvia (Journal of Physics A: Mathematical and Theoretical, 07/2022)
      A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, ...
    • Symmetries, Conservation and Dissipation in Time-Dependent Contact Systems 

      Gaset, Jordi; López-Gordón, Asier; Rivas, Xavier (Fortschritte der Physik, 2023)
      In contact Hamiltonian systems, the so-called dissipated quantities are akin to conserved quantities in classical Hamiltonian systems. In this article, a Noether's theorem for non-autonomous contact Hamiltonian systems is ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja