• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Symmetries, Conservation and Dissipation in Time-Dependent Contact Systems

    Autor: 
    Gaset, Jordi
    ;
    López-Gordón, Asier
    ;
    Rivas, Xavier
    Fecha: 
    2023
    Palabra clave: 
    conserved quantity; contact system; dissipation; Noether's theorem; symmetry; Scopus; JCR
    Revista / editorial: 
    Fortschritte der Physik
    Citación: 
    Gaset, J., López‐Gordón, A., & Rivas, X. (2023). Symmetries, Conservation and Dissipation in Time‐Dependent Contact Systems. Fortschritte der Physik, 2300048.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15547
    DOI: 
    https://doi.org/10.1002/prop.202300048
    Dirección web: 
    https://onlinelibrary.wiley.com/doi/10.1002/prop.202300048
    Open Access
    Resumen:
    In contact Hamiltonian systems, the so-called dissipated quantities are akin to conserved quantities in classical Hamiltonian systems. In this article, a Noether's theorem for non-autonomous contact Hamiltonian systems is proved, characterizing a class of symmetries which are in bijection with dissipated quantities. Other classes of symmetries which preserve (up to a conformal factor) additional structures, such as the contact form or the Hamiltonian function, are also studied. Furthermore, making use of the geometric structures of the extended tangent bundle, additional classes of symmetries for time-dependent contact Lagrangian systems are introduced. The results are illustrated with several examples. In particular, the two-body problem with time-dependent friction is presented, which could be interesting in celestial mechanics.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Symmetries_Conservation_and_Dissipation.pdf
    Tamaño: 2.754Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    10
    82
    230
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    5
    13
    79

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Time-dependent contact mechanics 

      de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)
      Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ...
    • Multicontact formulation for non-conservative field theories 

      de León, Manuel; Gaset, Jordi; Muñoz-Lecanda, Miguel C.; Rivas, Xavier; Román-Roy, Narciso (Journal of Physics A: Mathematical and Theoretical, 2023)
      A new geometric structure inspired by multisymplectic and contact geometries, which we call multicontact structure, is developed to describe non-conservative classical field theories. Using the differential forms that ...
    • Hamilton–Jacobi theory and integrability for autonomous and non-autonomous contact systems 

      de León, Manuel; Lainz, Manuel; López-Gordón, Asier; Rivas, Xavier (Journal of Geometry and Physics, 2023)
      In this paper, we study the integrability of contact Hamiltonian systems, both time-dependent and independent. In order to do so, we construct a Hamilton–Jacobi theory for these systems following two approaches, obtaining ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja