• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    An Integrated Framework for COVID-19 Classification Based on Ensembles of Deep Features and Entropy Coded GLEO Feature Selection

    Autor: 
    Fayyaz, Abdul Muiz
    ;
    Raza, Mudassar
    ;
    Sharif, Muhammad
    ;
    Shah, Jamal Hussain
    ;
    Kadry, Seifedine
    ;
    Sanjuán Martínez, Óscar
    Fecha: 
    2023
    Palabra clave: 
    COVID-19; Darknet-53; Densenet-201; entropy; GLEO; superpixel; SVM; X-ray; Scopus; JCR
    Revista / editorial: 
    International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
    Citación: 
    Fayyaz, A. M., Raza, M., Sharif, M., Shah, J. H., Kadry, S., & Martínez, O. S. (2023). An Integrated Framework for COVID-19 Classification Based on Ensembles of Deep Features and Entropy Coded GLEO Feature Selection. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 31(01), 163-185.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14876
    DOI: 
    https://doi.org/10.1142/S0218488523500101
    Dirección web: 
    https://www.worldscientific.com/doi/10.1142/S0218488523500101
    Resumen:
    COVID-19 is a challenging worldwide pandemic disease nowadays that spreads from person to person in a very fast manner. It is necessary to develop an automated technique for COVID-19 identification. This work investigates a new framework that predicts COVID-19 based on X-ray images. The suggested methodology contains core phases as preprocessing, feature extraction, selection and categorization. The Guided and 2D Gaussian filters are utilized for image improvement as a preprocessing phase. The outcome is then passed to 2D-superpixel method for region of interest (ROI). The pre-trained models such as Darknet-53 and Densenet-201 are then applied for features extraction from the segmented images. The entropy coded GLEO features selection is based on the extracted and selected features, and ensemble serially to produce a single feature vector. The single vector is finally supplied as an input to the variations of the SVM classifier for the categorization of the normal/abnormal (COVID-19) X-rays images. The presented approach is evaluated with different measures known as accuracy, recall, F1 Score, and precision. The integrated framework for the proposed system achieves the acceptable accuracies on the SVM Classifiers, which authenticate the proposed approach’s effectiveness.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    28
    74
    20
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A Framework for Extractive Text Summarization Based on Deep Learning Modified Neural Network Classifier 

      Muthu, Bala Anand; Cb, Sivaparthipan; Kumar, Priyan Malarvizhi; Kadry, Seifedine; Hsu, Ching-Hsien; Sanjuán Martínez, Óscar; González-Crespo, Rubén (Association for Computing Machinery, 2021)
      There is an exponential growth of text data over the internet, and it is expected to gain significant growth and attention in the coming years. Extracting meaningful insights from text data is crucially important as it ...
    • A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier 

      Amin, Javeria; Anjum, Muhammad Almas; Sharif, Muhammad; Jabeen, Saima; Kadry, Seifedine; Moreno-Ger, Pablo (Computational Intelligence and Neuroscience, 2022)
      A brain tumor is an abnormal enlargement of cells if not properly diagnosed. Early detection of a brain tumor is critical for clinical practice and survival rates. Brain tumors arise in a variety of shapes, sizes, and ...
    • Detection of anomaly in surveillance videos using quantum convolutional neural networks 

      Amin, Javeria; Anjum, Muhammad Almas; Ibrar, Kainat; Sharif, Muhammad; Kadry, Seifedine; González-Crespo, Rubén (Image and Vision Computing, 2023)
      Anomalous behavior identification is the process of detecting behavior that differs from its normal. These incidents will vary from violence to war, road crashes to kidnapping, and so on in a surveillance model. Video ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja