Mostrar el registro sencillo del ítem

dc.contributor.authorFayyaz, Abdul Muiz
dc.contributor.authorRaza, Mudassar
dc.contributor.authorSharif, Muhammad
dc.contributor.authorShah, Jamal Hussain
dc.contributor.authorKadry, Seifedine
dc.contributor.authorSanjuán Martínez, Óscar
dc.date2023
dc.date.accessioned2023-06-09T11:26:18Z
dc.date.available2023-06-09T11:26:18Z
dc.identifier.citationFayyaz, A. M., Raza, M., Sharif, M., Shah, J. H., Kadry, S., & Martínez, O. S. (2023). An Integrated Framework for COVID-19 Classification Based on Ensembles of Deep Features and Entropy Coded GLEO Feature Selection. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 31(01), 163-185.es_ES
dc.identifier.issn0218-4885
dc.identifier.urihttps://reunir.unir.net/handle/123456789/14876
dc.description.abstractCOVID-19 is a challenging worldwide pandemic disease nowadays that spreads from person to person in a very fast manner. It is necessary to develop an automated technique for COVID-19 identification. This work investigates a new framework that predicts COVID-19 based on X-ray images. The suggested methodology contains core phases as preprocessing, feature extraction, selection and categorization. The Guided and 2D Gaussian filters are utilized for image improvement as a preprocessing phase. The outcome is then passed to 2D-superpixel method for region of interest (ROI). The pre-trained models such as Darknet-53 and Densenet-201 are then applied for features extraction from the segmented images. The entropy coded GLEO features selection is based on the extracted and selected features, and ensemble serially to produce a single feature vector. The single vector is finally supplied as an input to the variations of the SVM classifier for the categorization of the normal/abnormal (COVID-19) X-rays images. The presented approach is evaluated with different measures known as accuracy, recall, F1 Score, and precision. The integrated framework for the proposed system achieves the acceptable accuracies on the SVM Classifiers, which authenticate the proposed approach’s effectiveness.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systemses_ES
dc.relation.ispartofseries;vol. 31, nº 1
dc.relation.urihttps://www.worldscientific.com/doi/10.1142/S0218488523500101es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectCOVID-19es_ES
dc.subjectDarknet-53es_ES
dc.subjectDensenet-201es_ES
dc.subjectentropyes_ES
dc.subjectGLEOes_ES
dc.subjectsuperpixeles_ES
dc.subjectSVMes_ES
dc.subjectX-rayes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleAn Integrated Framework for COVID-19 Classification Based on Ensembles of Deep Features and Entropy Coded GLEO Feature Selectiones_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1142/S0218488523500101


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem