• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier

    Autor: 
    Amin, Javeria
    ;
    Anjum, Muhammad Almas
    ;
    Sharif, Muhammad
    ;
    Jabeen, Saima
    ;
    Kadry, Seifedine
    ;
    Moreno-Ger, Pablo
    Fecha: 
    2022
    Palabra clave: 
    MRI; fusion; images; glioma; segmentation; network; JCR; Scopus
    Revista / editorial: 
    Computational Intelligence and Neuroscience
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/13684
    DOI: 
    https://doi.org/10.1155/2022/3236305
    Dirección web: 
    https://www.hindawi.com/journals/cin/2022/3236305/
    Open Access
    Resumen:
    A brain tumor is an abnormal enlargement of cells if not properly diagnosed. Early detection of a brain tumor is critical for clinical practice and survival rates. Brain tumors arise in a variety of shapes, sizes, and features, with variable treatment options. Manual detection of tumors is difficult, time-consuming, and error-prone. Therefore, a significant requirement for computerized diagnostics systems for accurate brain tumor detection is present. In this research, deep features are extracted from the inceptionv3 model, in which score vector is acquired from softmax and supplied to the quantum variational classifier (QVR) for discrimination between glioma, meningioma, no tumor, and pituitary tumor. The classified tumor images have been passed to the proposed Seg-network where the actual infected region is segmented to analyze the tumor severity level. The outcomes of the reported research have been evaluated on three benchmark datasets such as Kaggle, 2020-BRATS, and local collected images. The model achieved greater than 90% detection scores to prove the proposed model's effectiveness.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    14
    46
    90
    54
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Detection of anomaly in surveillance videos using quantum convolutional neural networks 

      Amin, Javeria; Anjum, Muhammad Almas; Ibrar, Kainat; Sharif, Muhammad; Kadry, Seifedine; González-Crespo, Rubén (Image and Vision Computing, 2023)
      Anomalous behavior identification is the process of detecting behavior that differs from its normal. These incidents will vary from violence to war, road crashes to kidnapping, and so on in a surveillance model. Video ...
    • Visual Geometry Group based on U-Shaped Model for Liver/Liver Tumor Segmentation 

      Amin, Javeria; Almas Anjum, Muhammad; Sharif, Muhammad; Kadry, Seifedine; González-Crespo, Rubén (IEEE Latin America Transactions, 2023)
      Liver cancer is the primary reason of death around the globe. Manually detecting the infected tissues is a challenging and time-consuming task. The computerized methods help make accurate decisions and therapy processes. ...
    • ResNet18 Supported Inspection of Tuberculosis in Chest Radiographs With Integrated Deep, LBP, and DWT Features 

      Rajinikanth, Venkatesan; Kadry, Seifedine; Moreno-Ger, Pablo (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2023)
      The lung is a vital organ in human physiology and disease in lung causes various health issues. The acute disease in lung is a medical emergency and hence several methods are developed and implemented to detect the lung ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja