• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Reduction and reconstruction of multisymplectic Lie systems

    Autor: 
    Lucas, Javier de
    ;
    Gracia, Xavier
    ;
    Rivas, Xavier
    ;
    Román-Roy, Narciso
    ;
    Vilariño, Silvia
    Fecha: 
    07/2022
    Palabra clave: 
    Lie system; multisymplectic manifold; multisymplectic reduction and reconstruction; Vessiot-Guldberg Lie algebra; Lie group; time-dependent harmonic oscillator; energy-momentum method; JCR; Scopus
    Revista / editorial: 
    Journal of Physics A: Mathematical and Theoretical
    Citación: 
    Javier de Lucas et al 2022 J. Phys. A: Math. Theor. 55 295204 DOI 10.1088/1751-8121/ac78ab
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/14112
    DOI: 
    https://doi.org/10.1088/1751-8121/ac78ab
    Dirección web: 
    https://iopscience.iop.org/article/10.1088/1751-8121/ac78ab
    Open Access
    Resumen:
    A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, a so-called Vessiot-Guldberg Lie algebra. In this work, multisymplectic forms are applied to the study of the reduction of Lie systems through their Lie symmetries. By using a momentum map, we perform a reduction and reconstruction procedure of multisymplectic Lie systems, which allows us to solve the original problem by analysing several simpler multisymplectic Lie systems. Conversely, we study how reduced multisymplectic Lie systems allow us to retrieve the form of the multisymplectic Lie system that gave rise to them. Our results are illustrated with examples from physics, mathematics, and control theory.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Reduction_and_reconstruction.pdf
    Tamaño: 1.561Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    60
    87
    71
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    44
    67
    92

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Multicontact formulation for non-conservative field theories 

      de León, Manuel; Gaset, Jordi; Muñoz-Lecanda, Miguel C.; Rivas, Xavier; Román-Roy, Narciso (Journal of Physics A: Mathematical and Theoretical, 2023)
      A new geometric structure inspired by multisymplectic and contact geometries, which we call multicontact structure, is developed to describe non-conservative classical field theories. Using the differential forms that ...
    • On k-polycosymplectic Marsden–Weinstein reductions 

      Lucas, Javier de; Rivas, Xavier; Vilariño, Silvia; Zawora, Bartosz M. (Journal of Geometry and Physics, 2023)
      We review and slightly improve the known k-polysymplectic Marsden–Weinstein reduction theory by removing some technical conditions on k-polysymplectic momentum maps by developing a theory of affine Lie group actions for ...
    • Contact Lie systems: theory and applications 

      Lucas, Javier de; Rivas, Xavier (Journal of Physics A: Mathematical and Theoretical, 2023)
      A Lie system is a time-dependent system of differential equations describing the integral curves of a time-dependent vector field that can be considered as a curve in a finite-dimensional Lie algebra of vector fields V. ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja