On k-polycosymplectic Marsden–Weinstein reductions
Autor:
Lucas, Javier de
; Rivas, Xavier
; Vilariño, Silvia
; Zawora, Bartosz M.
Fecha:
2023Palabra clave:
Revista / editorial:
Journal of Geometry and PhysicsCitación:
de Lucas, J., Rivas, X., Vilariño, S., & Zawora, B. M. (2023). On k-polycosymplectic Marsden–Weinstein reductions. Journal of Geometry and Physics, 104899.Tipo de Ítem:
Articulo Revista IndexadaResumen:
We review and slightly improve the known k-polysymplectic Marsden–Weinstein reduction theory by removing some technical conditions on k-polysymplectic momentum maps by developing a theory of affine Lie group actions for k-polysymplectic momentum maps, removing the necessity of their co-adjoint equivariance. Then, we focus on the analysis of a particular case of k-polysymplectic manifolds, the so-called fibred ones, and we study their k-polysymplectic Marsden–Weinstein reductions. Previous results allow us to devise a k-polycosymplectic Marsden–Weinstein reduction theory, which represents one of our main results. Our findings are applied to study coupled vibrating strings and, more generally, k-polycosymplectic Hamiltonian systems with field symmetries. We show that k-polycosymplectic geometry can be understood as a particular type of k-polysymplectic geometry. Finally, a k-cosymplectic to ℓ-cosymplectic geometric reduction theory is presented, which reduces, geometrically, the space-time variables in a k-cosymplectic framework. An application of this latter result to a vibrating membrane with symmetries is given.
Ficheros en el ítem
Nombre: On_k-polycosymplectic_Marsden-Weinstein_reductions.pdf
Tamaño: 864.4Kb
Formato: application/pdf
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
102 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
30 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Reduction and reconstruction of multisymplectic Lie systems
Lucas, Javier de; Gracia, Xavier; Rivas, Xavier; Román-Roy, Narciso; Vilariño, Silvia (Journal of Physics A: Mathematical and Theoretical, 07/2022)A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, ... -
Contact Lie systems: theory and applications
Lucas, Javier de; Rivas, Xavier (Journal of Physics A: Mathematical and Theoretical, 2023)A Lie system is a time-dependent system of differential equations describing the integral curves of a time-dependent vector field that can be considered as a curve in a finite-dimensional Lie algebra of vector fields V. ... -
Time-dependent contact mechanics
de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ...