• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    On k-polycosymplectic Marsden–Weinstein reductions

    Autor: 
    Lucas, Javier de
    ;
    Rivas, Xavier
    ;
    Vilariño, Silvia
    ;
    Zawora, Bartosz M.
    Fecha: 
    2023
    Palabra clave: 
    classical field theory; k-polycosymplectic manifold; k-polysymplectic manifold; Marsden–Weinstein reduction; momentum map; Non-autonomous Hamiltonian formalism; Scopus; JCR
    Revista / editorial: 
    Journal of Geometry and Physics
    Citación: 
    de Lucas, J., Rivas, X., Vilariño, S., & Zawora, B. M. (2023). On k-polycosymplectic Marsden–Weinstein reductions. Journal of Geometry and Physics, 104899.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/16078
    DOI: 
    https://doi.org/10.1016/j.geomphys.2023.104899
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S0393044023001511?via%3Dihub
    Open Access
    Resumen:
    We review and slightly improve the known k-polysymplectic Marsden–Weinstein reduction theory by removing some technical conditions on k-polysymplectic momentum maps by developing a theory of affine Lie group actions for k-polysymplectic momentum maps, removing the necessity of their co-adjoint equivariance. Then, we focus on the analysis of a particular case of k-polysymplectic manifolds, the so-called fibred ones, and we study their k-polysymplectic Marsden–Weinstein reductions. Previous results allow us to devise a k-polycosymplectic Marsden–Weinstein reduction theory, which represents one of our main results. Our findings are applied to study coupled vibrating strings and, more generally, k-polycosymplectic Hamiltonian systems with field symmetries. We show that k-polycosymplectic geometry can be understood as a particular type of k-polysymplectic geometry. Finally, a k-cosymplectic to ℓ-cosymplectic geometric reduction theory is presented, which reduces, geometrically, the space-time variables in a k-cosymplectic framework. An application of this latter result to a vibrating membrane with symmetries is given.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: On_k-polycosymplectic_Marsden-Weinstein_reductions.pdf
    Tamaño: 864.4Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    111
    65
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    28

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Reduction and reconstruction of multisymplectic Lie systems 

      Lucas, Javier de; Gracia, Xavier; Rivas, Xavier; Román-Roy, Narciso; Vilariño, Silvia (Journal of Physics A: Mathematical and Theoretical, 07/2022)
      A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, ...
    • Contact Lie systems: theory and applications 

      Lucas, Javier de; Rivas, Xavier (Journal of Physics A: Mathematical and Theoretical, 2023)
      A Lie system is a time-dependent system of differential equations describing the integral curves of a time-dependent vector field that can be considered as a curve in a finite-dimensional Lie algebra of vector fields V. ...
    • Time-dependent contact mechanics 

      de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)
      Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja