• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Contact Lie systems: theory and applications

    Autor: 
    Lucas, Javier de
    ;
    Rivas, Xavier
    Fecha: 
    2023
    Palabra clave: 
    lie system; superposition rule; contact manifold; coalgebra method; contact Marsden–Weinstein reduction; JCR; Scopus
    Revista / editorial: 
    Journal of Physics A: Mathematical and Theoretical
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/16217
    DOI: 
    https://doi.org/10.1088/1751-8121/ace0e7
    Dirección web: 
    https://iopscience.iop.org/article/10.1088/1751-8121/ace0e7
    Open Access
    Resumen:
    A Lie system is a time-dependent system of differential equations describing the integral curves of a time-dependent vector field that can be considered as a curve in a finite-dimensional Lie algebra of vector fields V. We call V a Vessiot-Guldberg Lie algebra. We define and analyse contact Lie systems, namely Lie systems admitting a Vessiot-Guldberg Lie algebra of Hamiltonian vector fields relative to a contact manifold. We also study contact Lie systems of Liouville type, which are invariant relative to the flow of a Reeb vector field. Liouville theorems, contact Marsden-Weinstein reductions, and Gromov non-squeezing theorems are developed and applied to contact Lie systems. Contact Lie systems on three-dimensional Lie groups with Vessiot-Guldberg Lie algebras of right-invariant vector fields and associated with left-invariant contact forms are classified. Our results are illustrated with examples having relevant physical and mathematical applications, e.g. Schwarz equations, Brockett systems, quantum mechanical systems, etc. Finally, a Poisson coalgebra method to derive superposition rules for contact Lie systems of Liouville type is developed.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Contact Lie systems theory and.pdf
    Tamaño: 998.4Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    103
    112
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    87
    237

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Reduction and reconstruction of multisymplectic Lie systems 

      Lucas, Javier de; Gracia, Xavier; Rivas, Xavier; Román-Roy, Narciso; Vilariño, Silvia (Journal of Physics A: Mathematical and Theoretical, 07/2022)
      A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, ...
    • On k-polycosymplectic Marsden–Weinstein reductions 

      Lucas, Javier de; Rivas, Xavier; Vilariño, Silvia; Zawora, Bartosz M. (Journal of Geometry and Physics, 2023)
      We review and slightly improve the known k-polysymplectic Marsden–Weinstein reduction theory by removing some technical conditions on k-polysymplectic momentum maps by developing a theory of affine Lie group actions for ...
    • Time-dependent contact mechanics 

      de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)
      Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja