Contact Lie systems: theory and applications
Autor:
Lucas, Javier de
; Rivas, Xavier
Fecha:
2023Palabra clave:
Revista / editorial:
Journal of Physics A: Mathematical and TheoreticalTipo de Ítem:
Articulo Revista IndexadaDirección web:
https://iopscience.iop.org/article/10.1088/1751-8121/ace0e7Resumen:
A Lie system is a time-dependent system of differential equations describing the integral curves of a time-dependent vector field that can be considered as a curve in a finite-dimensional Lie algebra of vector fields V. We call V a Vessiot-Guldberg Lie algebra. We define and analyse contact Lie systems, namely Lie systems admitting a Vessiot-Guldberg Lie algebra of Hamiltonian vector fields relative to a contact manifold. We also study contact Lie systems of Liouville type, which are invariant relative to the flow of a Reeb vector field. Liouville theorems, contact Marsden-Weinstein reductions, and Gromov non-squeezing theorems are developed and applied to contact Lie systems. Contact Lie systems on three-dimensional Lie groups with Vessiot-Guldberg Lie algebras of right-invariant vector fields and associated with left-invariant contact forms are classified. Our results are illustrated with examples having relevant physical and mathematical applications, e.g. Schwarz equations, Brockett systems, quantum mechanical systems, etc. Finally, a Poisson coalgebra method to derive superposition rules for contact Lie systems of Liouville type is developed.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
92 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
73 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Reduction and reconstruction of multisymplectic Lie systems
Lucas, Javier de; Gracia, Xavier; Rivas, Xavier; Román-Roy, Narciso; Vilariño, Silvia (Journal of Physics A: Mathematical and Theoretical, 07/2022)A Lie system is a non-autonomous system of first-order ordinary differential equations describing the integral curves of a non-autonomous vector field taking values in a finite-dimensional real Lie algebra of vector fields, ... -
On k-polycosymplectic Marsden–Weinstein reductions
Lucas, Javier de; Rivas, Xavier; Vilariño, Silvia; Zawora, Bartosz M. (Journal of Geometry and Physics, 2023)We review and slightly improve the known k-polysymplectic Marsden–Weinstein reduction theory by removing some technical conditions on k-polysymplectic momentum maps by developing a theory of affine Lie group actions for ... -
Time-dependent contact mechanics
de León, Manuel; Gaset, Jordi; Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Rivas, Xavier (Monatshefte fur Mathematik, 2023)Contact geometry allows us to describe some thermodynamic and dissipative systems. In this paper we introduce a new geometric structure in order to describe time-dependent contact systems: cocontact manifolds. Within this ...