• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Automated segmentation of leukocyte from hematological images—a study using various CNN schemes

    Autor: 
    Kadry, Seifedine
    ;
    Rajinikanth, Venkatesan
    ;
    Taniar, David
    ;
    Damaševičius, Roberta
    ;
    Blanco Valencia, Xiomara Patricia
    Fecha: 
    2022
    Palabra clave: 
    hematological images; leukocyte segmentation; performance evaluation; SegNet; U-Net; VGG-UNet; Scopus; JCR
    Revista / editorial: 
    Springer
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12768
    DOI: 
    https://doi.org/10.1007/s11227-021-04125-4
    Dirección web: 
    https://link.springer.com/article/10.1007/s11227-021-04125-4
    Open Access
    Resumen:
    Medical images play a fundamental role in disease screening, and automated evaluation of these images is widely preferred in hospitals. Recently, Convolutional Neural Network (CNN) supported medical data assessment is widely adopted to inspect a set of medical imaging modalities. Extraction of the leukocyte section from a thin blood smear image is one of the essential procedures during the preliminary disease screening process. The conventional segmentation needs complex/hybrid procedures to extract the necessary section and the results achieved with conventional methods sometime tender poor results. Hence, this research aims to implement the CNN-assisted image segmentation scheme to extract the leukocyte section from the RGB scaled hematological images. The proposed work employs various CNN-based segmentation schemes, such as SegNet, U-Net, and VGG-UNet. We used the images from the Leukocyte Images for Segmentation and Classification (LISC) database. In this work, five classes of the leukocytes are considered, and each CNN segmentation scheme is separately implemented and evaluated with the ground-truth image. The experimental outcome of the proposed work confirms that the overall results accomplished with the VGG-UNet are better (Jaccard-Index = 91.5124%, Dice-Coefficient = 94.4080%, and Accuracy = 97.7316%) than those of the SegNet and U-Net schemes Finally, the merit of the proposed scheme is also confirmed using other similar image datasets, such as Blood Cell Count and Detection (BCCD) database and ALL-IDB2. The attained result confirms that the proposed scheme works well on hematological images and offers better performance measure values.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    38
    45
    83
    56
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A study on RGB image multi-thresholding using Kapur/Tsallis entropy and moth-flame algorithm 

      Rajinikanth, Venkatesan; Kadry, Seifedine; González-Crespo, Rubén ; Verdú, Elena (Universidad Internacional de la Rioja, 2021)
      In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, ...
    • Classification of Breast Thermal Images into Healthy/Cancer Group Using Pre-Trained Deep Learning Schemes 

      Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
      In the women's community, Breast Cancer (BC) is a severe disease. The World Health Organization reported in 2020 that 2.26 million deaths occur due to BC. BC is curable if detected early. Since thermal imaging is non-invasive ...
    • Automatic detection of lung nodule in CT scan slices using CNN segmentation schemes: A study 

      Kadry, Seifedine; Herrera-Viedma, Enrique; González-Crespo, Rubén; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
      The lung is one of the prime respiratory organs in human physiology, and its abnormality will severely disrupt the respiratory system. Lung Nodule (LN) is one of the abnormalities, and early screening and treatment are ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja