Mostrar el registro sencillo del ítem

dc.contributor.authorKadry, Seifedine
dc.contributor.authorRajinikanth, Venkatesan
dc.contributor.authorTaniar, David
dc.contributor.authorDamaševičius, Roberta
dc.contributor.authorBlanco Valencia, Xiomara Patricia
dc.date2022
dc.date.accessioned2022-03-30T12:29:28Z
dc.date.available2022-03-30T12:29:28Z
dc.identifier.issn0920-8542
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12768
dc.description.abstractMedical images play a fundamental role in disease screening, and automated evaluation of these images is widely preferred in hospitals. Recently, Convolutional Neural Network (CNN) supported medical data assessment is widely adopted to inspect a set of medical imaging modalities. Extraction of the leukocyte section from a thin blood smear image is one of the essential procedures during the preliminary disease screening process. The conventional segmentation needs complex/hybrid procedures to extract the necessary section and the results achieved with conventional methods sometime tender poor results. Hence, this research aims to implement the CNN-assisted image segmentation scheme to extract the leukocyte section from the RGB scaled hematological images. The proposed work employs various CNN-based segmentation schemes, such as SegNet, U-Net, and VGG-UNet. We used the images from the Leukocyte Images for Segmentation and Classification (LISC) database. In this work, five classes of the leukocytes are considered, and each CNN segmentation scheme is separately implemented and evaluated with the ground-truth image. The experimental outcome of the proposed work confirms that the overall results accomplished with the VGG-UNet are better (Jaccard-Index = 91.5124%, Dice-Coefficient = 94.4080%, and Accuracy = 97.7316%) than those of the SegNet and U-Net schemes Finally, the merit of the proposed scheme is also confirmed using other similar image datasets, such as Blood Cell Count and Detection (BCCD) database and ALL-IDB2. The attained result confirms that the proposed scheme works well on hematological images and offers better performance measure values.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofseries;vol. 78, nº 5
dc.relation.urihttps://link.springer.com/article/10.1007/s11227-021-04125-4es_ES
dc.rightsopenAccesses_ES
dc.subjecthematological imageses_ES
dc.subjectleukocyte segmentationes_ES
dc.subjectperformance evaluationes_ES
dc.subjectSegNetes_ES
dc.subjectU-Netes_ES
dc.subjectVGG-UNetes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleAutomated segmentation of leukocyte from hematological images—a study using various CNN schemeses_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s11227-021-04125-4


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem