• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    A study on RGB image multi-thresholding using Kapur/Tsallis entropy and moth-flame algorithm

    Autor: 
    Rajinikanth, Venkatesan
    ;
    Kadry, Seifedine
    ;
    González-Crespo, Rubén
    ;
    Verdú, Elena
    Fecha: 
    2021
    Palabra clave: 
    finest threshold; Kapur’s entropy; moth-flame-optimization; picture quality; PSNR; SSIM; tsallis entropy; Scopus; JCR
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12846
    DOI: 
    https://doi.org/10.9781/ijimai.2021.11.008
    Dirección web: 
    https://www.ijimai.org/
    Open Access
    Resumen:
    In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, widely implemented to enhance the information in a class of gray/RGB class pictures. The thresholding helps to enhance the image by grouping the similar pixels based on the chosen thresholds. In this research, an entropy assisted threshold is implemented for the benchmark RGB images. The aim of this work is to examine the thresholding performance of well-known entropy functions, such as Kapur’s and Tsallis for a chosen image threshold. This work employs a Moth-Flame-Optimization (MFO) algorithm to support the automatic identification of the finest threshold (Th) on the benchmark RGB image for a chosen threshold value (Th=2,3,4,5). After getting the threshold image, a comparison is performed against its original picture and the necessary Picture-Quality-Values (PQV) is computed to confirm the merit of the proposed work. The experimental investigation is demonstrated using benchmark images with various dimensions and the outcome of this study confirms that the MFO helps to get a satisfactory result compared to the other heuristic algorithms considered in this study
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    42
    9
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Automated detection of age-related macular degeneration using a pre-trained deep-learning scheme 

      Kadry, Seifedine; Rajinikanth, Venkatesan; González-Crespo, Rubén ; Verdú, Elena (Springer, 2021)
      An eye disease affects the entire sensory operation, and an unrecognised and untreated eye disease may lead to loss of vision. The proposed work aims to develop an automated age-related macular degeneration (AMD) detection ...
    • A Study on RGB Image Multi-Thresholding using Kapur/Tsallis Entropy and Moth-Flame Algorithm 

      Rajinikanth, V.; Kadry, Seifedine; González-Crespo, Rubén; Verdú, Elena (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 12/2021)
      In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, ...
    • G-Sep: A Deep Learning Algorithm for Detection of Long-Term Sepsis Using Bidirectional Gated Recurrent Unit 

      Rajmohan, R.; Kumar, T. Ananth; Julie, E. Golden; Robinson, Y.H.; Vimal, S.; Kadry, Seifedine; González-Crespo, Rubén (International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2022)
      Sepsis is a common and deadly condition that must be treated eloquently within 19 hours. Numerous deep learning techniques, including Recurrent Neural Networks, Convolution Neural Networks, Long Short-Term Memory, and Gated ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja