• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Automatic detection of lung nodule in CT scan slices using CNN segmentation schemes: A study

    Autor: 
    Kadry, Seifedine
    ;
    Herrera-Viedma, Enrique
    ;
    González-Crespo, Rubén
    ;
    Krishnamoorthy, Sujatha
    ;
    Rajinikanth, Venkatesan
    Fecha: 
    2022
    Palabra clave: 
    accuracy; CNN segmentation; CT scan; detection; lung nodule; VGG-SegNet; Scopus(2)
    Revista / editorial: 
    Procedia Computer Science
    Citación: 
    Kadry, S., Herrera-Viedma, E., Crespo, R. G., Krishnamoorthy, S., & Rajinikanth, V. (2023). Automatic detection of lung nodule in CT scan slices using CNN segmentation schemes: A study. Procedia Computer Science, 218, 2786-2794.
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/15279
    DOI: 
    https://doi.org/10.1016/j.procs.2023.01.250
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S1877050923002508?via%3Dihub
    Open Access
    Resumen:
    The lung is one of the prime respiratory organs in human physiology, and its abnormality will severely disrupt the respiratory system. Lung Nodule (LN) is one of the abnormalities, and early screening and treatment are necessary to reduce its harshness. The proposed work aims to implement the Convolutional-Neural-Network (CNN) segmentation methodology to extract the LN in various lung CT slices, such as axial, coronal, and sagittal planes. This work consists of the following phases; (i) Image collection and pre-processing, (ii) Ground-truth generation, (iii) CNN-supported segmentation, and (iv) Performance evaluation and validation. In this work, the merit of pre-trained CNN segmentation schemes is verified using (i) One-fold training and (ii) Two-fold training methods. The test images for this study are collected from The Cancer Imaging Archive (TCIA) database. The experimental investigation is executed using Python®, and the outcome of this study confirms that the VGG-SegNet helps to get better values of Jaccard (>88%), Dice (>93%), and Accuracy (>96%) compared to other CNN methods.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: automatic_detection_o_ lung_nodule_in_CT_scan_slices.pdf
    Tamaño: 1.181Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    17
    113
    38
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    14
    23
    20

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Classification of Breast Thermal Images into Healthy/Cancer Group Using Pre-Trained Deep Learning Schemes 

      Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
      In the women's community, Breast Cancer (BC) is a severe disease. The World Health Organization reported in 2020 that 2.26 million deaths occur due to BC. BC is curable if detected early. Since thermal imaging is non-invasive ...
    • Deep and handcrafted feature supported diabetic retinopathy detection: A study 

      Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
      The eye is the prime sensory organ in physiology, and the abnormality in the eye severely influences the vision system. Therefore, eye irregularity is commonly assessed using imaging schemes, and Fundus Retinal Image (FRI) ...
    • A study on RGB image multi-thresholding using Kapur/Tsallis entropy and moth-flame algorithm 

      Rajinikanth, Venkatesan; Kadry, Seifedine; González-Crespo, Rubén ; Verdú, Elena (Universidad Internacional de la Rioja, 2021)
      In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja