Automatic detection of lung nodule in CT scan slices using CNN segmentation schemes: A study
Autor:
Kadry, Seifedine
; Herrera-Viedma, Enrique
; González-Crespo, Rubén
; Krishnamoorthy, Sujatha
; Rajinikanth, Venkatesan
Fecha:
2022Palabra clave:
Revista / editorial:
Procedia Computer ScienceCitación:
Kadry, S., Herrera-Viedma, E., Crespo, R. G., Krishnamoorthy, S., & Rajinikanth, V. (2023). Automatic detection of lung nodule in CT scan slices using CNN segmentation schemes: A study. Procedia Computer Science, 218, 2786-2794.Tipo de Ítem:
conferenceObjectResumen:
The lung is one of the prime respiratory organs in human physiology, and its abnormality will severely disrupt the respiratory system. Lung Nodule (LN) is one of the abnormalities, and early screening and treatment are necessary to reduce its harshness. The proposed work aims to implement the Convolutional-Neural-Network (CNN) segmentation methodology to extract the LN in various lung CT slices, such as axial, coronal, and sagittal planes. This work consists of the following phases; (i) Image collection and pre-processing, (ii) Ground-truth generation, (iii) CNN-supported segmentation, and (iv) Performance evaluation and validation. In this work, the merit of pre-trained CNN segmentation schemes is verified using (i) One-fold training and (ii) Two-fold training methods. The test images for this study are collected from The Cancer Imaging Archive (TCIA) database. The experimental investigation is executed using Python®, and the outcome of this study confirms that the VGG-SegNet helps to get better values of Jaccard (>88%), Dice (>93%), and Accuracy (>96%) compared to other CNN methods.
Ficheros en el ítem
Nombre: automatic_detection_o_ lung_nodule_in_CT_scan_slices.pdf
Tamaño: 1.181Mb
Formato: application/pdf
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
17 |
110 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
14 |
23 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Classification of Breast Thermal Images into Healthy/Cancer Group Using Pre-Trained Deep Learning Schemes
Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)In the women's community, Breast Cancer (BC) is a severe disease. The World Health Organization reported in 2020 that 2.26 million deaths occur due to BC. BC is curable if detected early. Since thermal imaging is non-invasive ... -
Deep and handcrafted feature supported diabetic retinopathy detection: A study
Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)The eye is the prime sensory organ in physiology, and the abnormality in the eye severely influences the vision system. Therefore, eye irregularity is commonly assessed using imaging schemes, and Fundus Retinal Image (FRI) ... -
A study on RGB image multi-thresholding using Kapur/Tsallis entropy and moth-flame algorithm
Rajinikanth, Venkatesan; Kadry, Seifedine; González-Crespo, Rubén ; Verdú, Elena (Universidad Internacional de la Rioja, 2021)In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, ...