• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Deep Learning for Diabetic Retinopathy Prediction

    Autor: 
    Rodriguez-Leon, C.
    ;
    Arevalo, William
    ;
    Banos, Oresti
    ;
    Villalonga, Claudia
    Fecha: 
    2021
    Palabra clave: 
    deep learning; diabetic retinopathy; transfer learning; Scopus(2); WOS(2)
    Revista / editorial: 
    Springer Science and Business Media Deutschland GmbH
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/12682
    DOI: 
    https://doi.org/10.1007/978-3-030-85030-2_44
    Dirección web: 
    https://link.springer.com/chapter/10.1007/978-3-030-85030-2_44
    Resumen:
    Diabetic retinopathy is a complication of diabetes mellitus. Its early diagnosis can prevent its progression and avoid the development of other major complications such as blindness. Deep learning and transfer learning appear in this context as powerful tools to aid in diagnosing this condition. The present work proposes to experiment with different models of pre-trained convolutional neural networks to determine which one fits best the problem of predicting diabetic retinopathy. The Diabetic Retinopathy Detection dataset supported by the EyePACS competition is used for evaluation. Seven pre-trained CNN models implemented in the Keras library developed in Python and, in this case, executed in the Kaggle platform, are used. Results show that no architecture performs better in all evaluation metrics. From a balanced behaviour perspective, the MobileNetV2 model stands out, with execution times almost half that of the slowest CNNs and without falling into overfitting with 20 learning epochs. InceptionResNetV2 stands out from the perspective of best performance, with a Kappa coefficient of 0.7588.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    46
    48
    68
    80
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Enabling remote assessment of cognitive behaviour through mobile experience sampling 

      Wohlfahrt-Laymann, Jan; Hermens, Hermie; Villalonga, Claudia ; Vollenbroek-Hutten, Miriam; Banos, Oresti (2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, 2018)
      Cognitive decline is among the normal processes of ageing, involving problems with memory, language, thinking and judgment, happening at different times and affecting people's live to a significant extent. Traditional ...
    • Opportunistic Activity Recognition in IoT Sensor Ecosystems via Multimodal Transfer Learning 

      Banos, Oresti; Calatroni, Alberto; Damas, Miguel; Pomares, Héctor; Roggen, Daniel; Rojas, Ignacio; Villalonga, Claudia (Springer, 2021)
      Recognizing human activities seamlessly and ubiquitously is now closer than ever given the myriad of sensors readily deployed on and around users. However, the training of recognition systems continues to be both time and ...
    • Improving Wearable Activity Recognition via Fusion of Multiple Equally-Sized Data Subwindows 

      Banos, Oresti; Gálvez, Juan Manuel; Damas, Miguel; Guillén, Alberto; Herrera, Luis Javier; Pomares, Héctor; Rojas, Ignacio; Villalonga, Claudia (Lecture Notes in Computer Science, 2019)
      The automatic recognition of physical activities typically involves various signal processing and machine learning steps used to transform raw sensor data into activity labels. One crucial step has to do with the segmentation ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja