• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Opportunistic Activity Recognition in IoT Sensor Ecosystems via Multimodal Transfer Learning

    Autor: 
    Banos, Oresti
    ;
    Calatroni, Alberto
    ;
    Damas, Miguel
    ;
    Pomares, Héctor
    ;
    Roggen, Daniel
    ;
    Rojas, Ignacio
    ;
    Villalonga, Claudia (1)
    Fecha: 
    2021
    Palabra clave: 
    activity recognition; ambient sensors; human–computer interaction; multimodal sensors; transfer learning; wearable sensors; Scopus; JCR
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13168
    DOI: 
    https://doi.org/10.1007/s11063-021-10468-z
    Dirección web: 
    https://link.springer.com/article/10.1007/s11063-021-10468-z
    Resumen:
    Recognizing human activities seamlessly and ubiquitously is now closer than ever given the myriad of sensors readily deployed on and around users. However, the training of recognition systems continues to be both time and resource-consuming, as datasets must be collected ad-hoc for each specific sensor setup a person may encounter in their daily life. This work presents an alternate approach based on transfer learning to opportunistically train new unseen or target sensor systems from existing or source sensor systems. The approach uses system identification techniques to learn a mapping function that automatically translates the signals from the source sensor domain to the target sensor domain, and vice versa. This can be done for sensor signals of the same or cross modality. Two transfer models are proposed to translate recognition systems based on either activity templates or activity models, depending on the characteristics of both source and target sensor systems. The proposed transfer methods are evaluated in a human–computer interaction scenario, where the transfer is performed in between wearable sensors placed at different body locations, and in between wearable sensors and an ambient depth camera sensor. Results show that a good transfer is possible with just a few seconds of data, irrespective of the direction of the transfer and for similar and cross sensor modalities.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    43
    1
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Improving Wearable Activity Recognition via Fusion of Multiple Equally-Sized Data Subwindows 

      Banos, Oresti; Gálvez, Juan Manuel; Damas, Miguel; Guillén, Alberto; Herrera, Luis Javier; Pomares, Héctor; Rojas, Ignacio; Villalonga, Claudia (1) (Lecture Notes in Computer Science, 2019)
      The automatic recognition of physical activities typically involves various signal processing and machine learning steps used to transform raw sensor data into activity labels. One crucial step has to do with the segmentation ...
    • Enabling remote assessment of cognitive behaviour through mobile experience sampling 

      Wohlfahrt-Laymann, Jan; Hermens, Hermie; Villalonga, Claudia (1); Vollenbroek-Hutten, Miriam; Banos, Oresti (2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, 2018)
      Cognitive decline is among the normal processes of ageing, involving problems with memory, language, thinking and judgment, happening at different times and affecting people's live to a significant extent. Traditional ...
    • Deep Learning for Diabetic Retinopathy Prediction 

      Rodriguez-Leon, C.; Arevalo, William (1); Banos, Oresti; Villalonga, Claudia (Springer Science and Business Media Deutschland GmbH, 2021)
      Diabetic retinopathy is a complication of diabetes mellitus. Its early diagnosis can prevent its progression and avoid the development of other major complications such as blindness. Deep learning and transfer learning ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja