Improving Wearable Activity Recognition via Fusion of Multiple Equally-Sized Data Subwindows
Autor:
Banos, Oresti
; Gálvez, Juan Manuel
; Damas, Miguel
; Guillén, Alberto
; Herrera, Luis Javier
; Pomares, Héctor
; Rojas, Ignacio
; Villalonga, Claudia
Fecha:
2019Palabra clave:
Revista / editorial:
Lecture Notes in Computer ScienceCitación:
Banos O. et al. (2019) Improving Wearable Activity Recognition via Fusion of Multiple Equally-Sized Data Subwindows. In: Rojas I., Joya G., Catala A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, vol 11506. Springer, Cham. https://doi.org/10.1007/978-3-030-20521-8_30Tipo de Ítem:
conferenceObjectResumen:
The automatic recognition of physical activities typically involves various signal processing and machine learning steps used to transform raw sensor data into activity labels. One crucial step has to do with the segmentation or windowing of the sensor data stream, as it has clear implications on the eventual accuracy level of the activity recogniser. While prior studies have proposed specific window sizes to generally achieve good recognition results, in this work we explore the potential of fusing multiple equally-sized subwindows to improve such recognition capabilities. We tested our approach for eight different subwindow sizes on a widely-used activity recognition dataset. The results show that the recognition performance can be increased up to 15% when using the fusion of equally-sized subwindows compared to using a classical single window.
Descripción:
Ponencia de la conferencia "15th International Work-Conference on Artificial Neural Networks, IWANN 2019; Gran Canaria; Spain; 12 June 2019 through 14 June 2019"
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
31 |
51 |
45 |
44 |
71 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Opportunistic Activity Recognition in IoT Sensor Ecosystems via Multimodal Transfer Learning
Banos, Oresti; Calatroni, Alberto; Damas, Miguel; Pomares, Héctor; Roggen, Daniel; Rojas, Ignacio; Villalonga, Claudia (Springer, 2021)Recognizing human activities seamlessly and ubiquitously is now closer than ever given the myriad of sensors readily deployed on and around users. However, the training of recognition systems continues to be both time and ... -
Women and gambling disorder: Assessing dropouts and relapses in cognitive behavioral group therapy
Baño, Marta; Mestre-Bach, Gemma; Granero, Roser; Fernández-Aranda, Fernando; Gómez-Peña, Mónica; Moragas, Laura; del Pino-Gutierrez, Amparo; Codina, Ester; Guillén-Guzmán, Elías; Valero-Solis, Susana; Lizbeth Lara-Huallipe, Milagros; Baenas, Isabel; Mora-Maltas, Bernat; Valenciano-Mendoza, Eduardo; Solé-Morata, Neus; Gálvez-Solé, Laura; González-Bueso, Vega; José Santamaría, Juan; Menchón, José M.; Jiménez-Murcia, Susana (Elsevier Ltd, 2021)Background: Gender-specific literature focused on gambling disorder (GD) is scarce, and women with GD have been understudied. Therefore, the aim of this study was to estimate the short-term effectiveness in women with GD ... -
Gold Glyconanoparticles Combined with 91–99 Peptide of the Bacterial Toxin, Listeriolysin O, Are Efficient Immunotherapies in Experimental Bladder Tumors
Terán-Navarro, Hector; Zeoli, Andrea; Salines-Cuevas, David; Marradi, Marco; Montoya, Noemí ; Gonzalez-Lopez, Elena; Ocejo-Vinyals, J. Gonzalo; Dominguez-Esteban, Mario; Gutierrez-Baños, Jose Luis; Campos-Juanatey, Felix; Yañez-Diaz, Sonsoles; Garcia-Castaño, Almudena; Rivera, Fernando; Duran, Ignacio; Álvarez-Domínguez, Carmen (Cancers, 2022)This study presents proof of concept assays to validate gold nanoparticles loaded with the bacterial peptide 91–99 of the listeriolysin O toxin (GNP-LLO91–99 nanovaccines) as immunotherapy for bladder tumors. GNP-LLO91–99 ...