• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Enabling remote assessment of cognitive behaviour through mobile experience sampling

    Autor: 
    Wohlfahrt-Laymann, Jan
    ;
    Hermens, Hermie
    ;
    Villalonga, Claudia
    ;
    Vollenbroek-Hutten, Miriam
    ;
    Banos, Oresti
    Fecha: 
    2018
    Palabra clave: 
    cognitive assessment; human behaviour; mHealth; mobile sensing; smartphone; Scopus(2); WOS(2)
    Revista / editorial: 
    2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/10535
    DOI: 
    https://doi.org/10.1109/PERCOMW.2018.8480310
    Dirección web: 
    https://ieeexplore.ieee.org/document/8480310/authors#authors
    Resumen:
    Cognitive decline is among the normal processes of ageing, involving problems with memory, language, thinking and judgment, happening at different times and affecting people's live to a significant extent. Traditional clinical methods for cognitive assessment are conducted by experts once first symptoms appear. Mobile technologies can help supporting more immediate, continuous and ubiquitous measurements, thus potentially allowing for much earlier diagnosis of cognitive disorders. We present in this paper a digital mobile tool to administer cognitive tests in the form of multimedia experience sampling methods (ESM), which can run on a smartphone and can be scheduled and assessed remotely. The tool integrates digital cognitive ESM with passive sensor data that can be used to study the interplay of cognition and physical, social and emotional behaviours. We implement the Mini-Mental State Examination (MMSE) test, a clinical questionnaire extensively used to assess cognitive disorders, in order to showcase the possibilities offered by the proposed tool. Initial usability results show the tool to be perceived simple, easy and accessible for cognitively unimpaired persons.
    Descripción: 
    Ponencia de la conferencia "2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018; Athens; Greece; 19 March 2018 through 23 March 2018"
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    60
    38
    47
    33
    65
    110
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • MobileCogniTracker: A mobile experience sampling tool for tracking cognitive behaviour 

      Wohlfahrt-Laymann, Jan; Hermens, Hermie; Villalonga, Claudia ; Vollenbroek-Hutten, Miriam (Journal of Ambient Intelligence and Humanized Computing, 01/06/2019)
      As the population ages, cognitive decline is becoming a worldwide threat to older adults’ independence and quality of life. Cognitive decline involves problems with memory, language, thinking and judgement, thus severely ...
    • Opportunistic Activity Recognition in IoT Sensor Ecosystems via Multimodal Transfer Learning 

      Banos, Oresti; Calatroni, Alberto; Damas, Miguel; Pomares, Héctor; Roggen, Daniel; Rojas, Ignacio; Villalonga, Claudia (Springer, 2021)
      Recognizing human activities seamlessly and ubiquitously is now closer than ever given the myriad of sensors readily deployed on and around users. However, the training of recognition systems continues to be both time and ...
    • Improving Wearable Activity Recognition via Fusion of Multiple Equally-Sized Data Subwindows 

      Banos, Oresti; Gálvez, Juan Manuel; Damas, Miguel; Guillén, Alberto; Herrera, Luis Javier; Pomares, Héctor; Rojas, Ignacio; Villalonga, Claudia (Lecture Notes in Computer Science, 2019)
      The automatic recognition of physical activities typically involves various signal processing and machine learning steps used to transform raw sensor data into activity labels. One crucial step has to do with the segmentation ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja