• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Review: machine learning techniques applied to cybersecurity

    Autor: 
    Martínez Torres, Javier (1)
    ;
    Iglesias Comesaña, Carla
    ;
    García-Nieto, Paulino J.
    Fecha: 
    10/2019
    Palabra clave: 
    cybersecurity; detection systems; Internet threats; machine learning; security; Scopus; JCR
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/9536
    DOI: 
    https://doi.org/10.1007/s13042-018-00906-1
    Dirección web: 
    https://link.springer.com/article/10.1007%2Fs13042-018-00906-1#citeas
    Resumen:
    Machine learning techniques are a set of mathematical models to solve high non-linearity problems of different topics: prediction, classification, data association, data conceptualization. In this work, the authors review the applications of machine learning techniques in the field of cybersecurity describing before the different classifications of the models based on (1) their structure, network-based or not, (2) their learning process, supervised or unsupervised and (3) their complexity. All the capabilities of machine learning techniques are to be regarded, but authors focus on prediction and classification, highlighting the possibilities of improving the models in order to minimize the error rates in the applications developed and available in the literature. This work presents the importance of different error criteria as the confusion matrix or mean absolute error in classification problems, and relative error in regression problems. Furthermore, special attention is paid to the application of the models in this review work. There are a wide variety of possibilities, applying these models to intrusion detection, or to detection and classification of attacks, to name a few. However, other important and innovative applications in the field of cybersecurity are presented. This work should serve as a guide for new researchers and those who want to immerse themselves in the field of machine learning techniques within cybersecurity.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    20
    125
    92
    53
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Predicting ore content throughout a machine learning procedure – An Sn-W enrichment case study 

      Iglesias Comesaña, Carla; Antunes, Margarida; Albuquerque, Teresa; Martínez Torres, Javier (1); Taboada, Javier (Journal of Geochemical Exploration, 01/2020)
      The distribution patterns of trace elements are very useful for predicting mineral deposits occurrence. Machine learning techniques were used for the computation of adequate models in trace elements' prediction. The main ...
    • Obtaining the sGAG distribution profile in articular cartilage color images 

      Iglesias Comesaña, Carla; Luo, Lu; Martínez Torres, Javier (1); Taboada, Javier; Pérez, Ignacio (Biomedical Engineering / Biomedizinische Technik, 10/2019)
      The articular cartilage tissue is an essential component of joints as it reduces the friction between the two bones. Its load-bearing properties depend mostly on proteoglycan distribution, which can be analyzed through the ...
    • Automatic image characterization of psoriasis lesions 

      Martínez Torres, Javier; Silva Piñeiro, Alicia; Alesanco, Álvaro; Pérez-Rey, Ignacio (1); García, José (MDPI, 2021)
      Psoriasis is a chronic skin disease that affects 125 million people worldwide and, par-ticularly, 2% of the Spanish population, characterized by the appearance of skin lesions due to a growth of the epidermis that is seven ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja