Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Torres, Javier (1)
dc.contributor.authorIglesias Comesaña, Carla
dc.contributor.authorGarcía-Nieto, Paulino J.
dc.date2019-10
dc.date.accessioned2019-11-12T16:24:40Z
dc.date.available2019-11-12T16:24:40Z
dc.identifier.issn18688071
dc.identifier.urihttps://reunir.unir.net/handle/123456789/9536
dc.description.abstractMachine learning techniques are a set of mathematical models to solve high non-linearity problems of different topics: prediction, classification, data association, data conceptualization. In this work, the authors review the applications of machine learning techniques in the field of cybersecurity describing before the different classifications of the models based on (1) their structure, network-based or not, (2) their learning process, supervised or unsupervised and (3) their complexity. All the capabilities of machine learning techniques are to be regarded, but authors focus on prediction and classification, highlighting the possibilities of improving the models in order to minimize the error rates in the applications developed and available in the literature. This work presents the importance of different error criteria as the confusion matrix or mean absolute error in classification problems, and relative error in regression problems. Furthermore, special attention is paid to the application of the models in this review work. There are a wide variety of possibilities, applying these models to intrusion detection, or to detection and classification of attacks, to name a few. However, other important and innovative applications in the field of cybersecurity are presented. This work should serve as a guide for new researchers and those who want to immerse themselves in the field of machine learning techniques within cybersecurity.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Machine Learning and Cyberneticses_ES
dc.relation.ispartofseries;vol. 10, nº 10
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs13042-018-00906-1#citeases_ES
dc.rightsrestrictedAccesses_ES
dc.subjectcybersecurityes_ES
dc.subjectdetection systemses_ES
dc.subjectInternet threatses_ES
dc.subjectmachine learninges_ES
dc.subjectsecurityes_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleReview: machine learning techniques applied to cybersecurityes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s13042-018-00906-1


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem