• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Obtaining the sGAG distribution profile in articular cartilage color images

    Autor: 
    Iglesias Comesaña, Carla
    ;
    Luo, Lu
    ;
    Martínez Torres, Javier (1)
    ;
    Taboada, Javier
    ;
    Pérez, Ignacio
    Fecha: 
    10/2019
    Palabra clave: 
    articular cartilage; color image processing; glycosaminoglycan; proteoglycan; tissue; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/9728
    DOI: 
    https://doi.org/10.1515/bmt-2018-0055
    Dirección web: 
    https://www.degruyter.com/view/j/bmte.2019.64.issue-5/bmt-2018-0055/bmt-2018-0055.xml
    Resumen:
    The articular cartilage tissue is an essential component of joints as it reduces the friction between the two bones. Its load-bearing properties depend mostly on proteoglycan distribution, which can be analyzed through the study of the presence of sulfated glycosaminoglycan (sGAG). Currently, sGAG distribution in articular cartilage is not completely known; it is calculated by means of laboratory tests that imply the inherent inaccuracy of a manual procedure. This paper presents an easy-to-use desktop software application for obtaining the sGAG distribution profile in tissue. This app uses color images of stained cartilage tissues taken under a microscope, so researchers at the Trinity Centre for Bioengineering (Dublin, Ireland) can understand the qualitative distribution of sGAG with depth in the studied tissues.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    68
    26
    24
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Predicting ore content throughout a machine learning procedure – An Sn-W enrichment case study 

      Iglesias Comesaña, Carla; Antunes, Margarida; Albuquerque, Teresa; Martínez Torres, Javier (1); Taboada, Javier (Journal of Geochemical Exploration, 01/2020)
      The distribution patterns of trace elements are very useful for predicting mineral deposits occurrence. Machine learning techniques were used for the computation of adequate models in trace elements' prediction. The main ...
    • Review: machine learning techniques applied to cybersecurity 

      Martínez Torres, Javier (1); Iglesias Comesaña, Carla; García-Nieto, Paulino J. (International Journal of Machine Learning and Cybernetics, 10/2019)
      Machine learning techniques are a set of mathematical models to solve high non-linearity problems of different topics: prediction, classification, data association, data conceptualization. In this work, the authors review ...
    • Automatic image characterization of psoriasis lesions 

      Martínez Torres, Javier; Silva Piñeiro, Alicia; Alesanco, Álvaro; Pérez-Rey, Ignacio (1); García, José (MDPI, 2021)
      Psoriasis is a chronic skin disease that affects 125 million people worldwide and, par-ticularly, 2% of the Spanish population, characterized by the appearance of skin lesions due to a growth of the epidermis that is seven ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja