Improving the domain of parameters for Newton's method with applications
Autor:
Argyros, Ioannis K
; Magreñán, Á. Alberto
; Sicilia, Juan Antonio
Fecha:
07/2017Palabra clave:
Revista / editorial:
Journal of Computational and Applied MathematicsTipo de Ítem:
Articulo Revista IndexadaResumen:
We present a new technique to improve the convergence domain for Newton’s method both in the semilocal and local case. It turns out that with the new technique the sufficient convergence conditions for Newton’s method are weaker, the error bounds are tighter and the information on the location of the solution is at least as precise as in earlier studies. Numerical examples are given showing that our results apply to solve nonlinear equations in cases where the old results cannot apply.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
29 |
124 |
73 |
31 |
35 |
40 |
46 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Ball convergence of a sixth-order Newton-like method based on means under weak conditions
Magreñán, Á. Alberto ; Argyros, Ioannis K; Rainer, J Javier ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 08/2018)We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative ... -
Extended local convergence for some inexact methods with applications
Argyros, Ioannis K; Legaz, M. J.; Magreñán, Á. Alberto; Moreno, D.; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the ... -
Different methods for solving STEM problems
Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...