• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Extended local convergence for some inexact methods with applications

    Autor: 
    Argyros, Ioannis K
    ;
    Legaz, M. J.
    ;
    Magreñán, Á. Alberto
    ;
    Moreno, D.
    ;
    Sicilia, Juan Antonio
    Fecha: 
    05/2019
    Palabra clave: 
    normed space; local convergence; inexact newton-like methods; frechet derivative; JCR; Scopus
    Revista / editorial: 
    Journal of Mathematical Chemistry
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/8427
    DOI: 
    https://doi.org/10.1007/s10910-019-01004-5
    Dirección web: 
    https://link.springer.com/article/10.1007%2Fs10910-019-01004-5
    Open Access
    Resumen:
    We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the first Frechet-derivative of the operator involved. Earlier results involve Lipschitz-type hypotheses on higher than the first Frechet-derivative. The applicability of these methods is extended this way and under less computational cost. Special cases and applications are provided to show that these new results can apply to solve these equations.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    87
    58
    31
    43
    37
    72
    49
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Weaker conditions for inexact mutitpoint Newton-like methods 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Moreno-Mediavilla, Daniel ; Orcos, Lara ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 01/2020)
      In this paper we study the problem of analyzing the convergence both local and semilocal of inexact Newton-like methods for approximating the solution of an equation in which there exists nondifferentiability. We will ...
    • Ball convergence of a sixth-order Newton-like method based on means under weak conditions 

      Magreñán, Á. Alberto ; Argyros, Ioannis K; Rainer, J Javier ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 08/2018)
      We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative ...
    • Different methods for solving STEM problems 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)
      We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja