• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Ball convergence of a sixth-order Newton-like method based on means under weak conditions

    Autor: 
    Magreñán, Á. Alberto
    ;
    Argyros, Ioannis K
    ;
    Rainer, J Javier
    ;
    Sicilia, Juan Antonio
    Fecha: 
    08/2018
    Palabra clave: 
    Newton-like method; local convergence; stolarky means; gini means; efficiency index; Scopus; JCR
    Revista / editorial: 
    Journal of Mathematical Chemistry
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/6653
    DOI: 
    https://doi.org/10.1007/s10910-018-0856-y
    Dirección web: 
    https://link.springer.com/article/10.1007/s10910-018-0856-y
    Resumen:
    We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative although only the first derivative appears in these methods. Hence, the applicability of the method is expanded. Finally, we solve the problem of the fractional conversion in the ammonia process showing the applicability of the theoretical results.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    17
    159
    75
    31
    36
    48
    85
    61
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Extended local convergence for some inexact methods with applications 

      Argyros, Ioannis K; Legaz, M. J.; Magreñán, Á. Alberto; Moreno, D.; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)
      We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the ...
    • Different methods for solving STEM problems 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)
      We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...
    • Study of local convergence and dynamics of a king-like two-step method with applications 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo ; Sicilia, Juan Antonio (Mathematics, 01/07/2020)
      In this paper, we present the local results of the convergence of the two-step King-like method to approximate the solution of nonlinear equations. In this study, we only apply conditions to the first derivative, because ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja