• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Improving supervised learning classification methods using multi-granular linguistic modelling and fuzzy entropy

    Autor: 
    Morente-Molinera, Juan Antonio
    ;
    Mezei, Jozsef
    ;
    Carlsson, Christer
    ;
    Herrera-Viedma, Enrique
    Fecha: 
    10/2017
    Palabra clave: 
    pragmatics; supervised learning; computational modeling; complexity theory; entropy; data models; computing with words; multi-granular fuzzy linguistic modeling; granular computing; classification; JCR; Scopus
    Revista / editorial: 
    IEEE Transactions on Fuzzy Systems
    Citación: 
    J. A. Morente-Molinera; J. Mezei; C. Carlsson; E. Herrera-Viedma, "Improving supervised learning classification methods using multi-granular linguistic modelling and fuzzy entropy," in IEEE Transactions on Fuzzy Systems , vol.PP, no.99, pp.1-1
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/4667
    DOI: 
    https://doi.org/10.1109/TFUZZ.2016.2594275
    Dirección web: 
    http://ieeexplore.ieee.org/document/7523323/
    Resumen:
    Obtaining good classification results using supervised learning methods is critical if we want to obtain a high level of precision in the classification processes. The training data used for the learning process plays a very important role in achieving this objective. Therefore, it is important to represent the data in a way that best expresses its meaning. For this purpose, we propose to apply linguistic modeling methods in order to obtain a linguistic representation. With the help of multi-granular linguistic modelling, data can be transformed and expressed using different (unbalanced) linguistic label sets. Expressing the data using linguistic expressions instead of numbers increases the readability, reduces the complexity of the problem and data recovering methods allow us to manually control the level of precision. In this paper, several datasets are transformed and utilized for classification tasks using several supervised learning algorithms. For each combination of datasets and algorithms, the data has been expressed using several linguistic label sets that have different granularity values. After carrying out the testing processes, we can conclude that, in some cases, reducing data complexity leads to better classification results. Therefore, it is found that linguistic representation of the training data with just the necessary and sufficient precision can improve the reliability of the classification process.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    29
    94
    46
    20
    31
    42
    117
    58
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Dealing with group decision-making environments that have a high amount of alternatives using card-sorting techniques 

      Morente-Molinera, Juan Antonio; Ríos Aguilar, Sergio ; González-Crespo, Rubén ; Herrera-Viedma, Enrique (Expert Systems with Applications, 01/08/2019)
      Due to the appearance of Web 2.0 technologies and smartphones, the amount of information available to carry out group decision-making processes has increased dramatically. Therefore, there is a need for group decision-making ...
    • Generating Recommendations in GDM with an Allocation of Information Granularity 

      Cabrerizo, Francisco Javier; Morente-Molinera, Juan Antonio ; Pérez, Ignacio Javier; Urena, Raquel; Herrera-Viedma, Enrique (Aggregation Functions in Theory and in Practice, 2018)
      A Group decision making process is carried out when human beings jointly make an election from a possible collection of alternatives. Here, a question of importance is to avoid winners and losers, in the sense that the ...
    • Granulating linguistic information in decision making under consensus and consistency 

      Cabrerizo, Francisco Javier; Morente-Molinera, Juan Antonio ; Pedrycz, Witold; Taghavi, Atefe; Herrera-Viedma, Enrique (Expert Systems with Applications, 01/07/2018)
      This study is concerned with group decision making contexts in which linguistic preference relations are used to provide the evaluations of results. On the one hand, granulation of linguistic terms, which are used as entries ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja