Mostrar el registro sencillo del ítem

dc.contributor.authorMorente-Molinera, Juan Antonio
dc.contributor.authorMezei, Jozsef
dc.contributor.authorCarlsson, Christer
dc.contributor.authorHerrera-Viedma, Enrique
dc.date2017-10
dc.date.accessioned2017-03-24T13:02:58Z
dc.date.available2017-03-24T13:02:58Z
dc.identifier.citationJ. A. Morente-Molinera; J. Mezei; C. Carlsson; E. Herrera-Viedma, "Improving supervised learning classification methods using multi-granular linguistic modelling and fuzzy entropy," in IEEE Transactions on Fuzzy Systems , vol.PP, no.99, pp.1-1es_ES
dc.identifier.issn1063-6706
dc.identifier.urihttps://reunir.unir.net/handle/123456789/4667
dc.description.abstractObtaining good classification results using supervised learning methods is critical if we want to obtain a high level of precision in the classification processes. The training data used for the learning process plays a very important role in achieving this objective. Therefore, it is important to represent the data in a way that best expresses its meaning. For this purpose, we propose to apply linguistic modeling methods in order to obtain a linguistic representation. With the help of multi-granular linguistic modelling, data can be transformed and expressed using different (unbalanced) linguistic label sets. Expressing the data using linguistic expressions instead of numbers increases the readability, reduces the complexity of the problem and data recovering methods allow us to manually control the level of precision. In this paper, several datasets are transformed and utilized for classification tasks using several supervised learning algorithms. For each combination of datasets and algorithms, the data has been expressed using several linguistic label sets that have different granularity values. After carrying out the testing processes, we can conclude that, in some cases, reducing data complexity leads to better classification results. Therefore, it is found that linguistic representation of the training data with just the necessary and sufficient precision can improve the reliability of the classification process.es_ES
dc.language.isoenges_ES
dc.publisherIEEE Transactions on Fuzzy Systemses_ES
dc.relation.ispartofseries;vol. PP, nº 99
dc.relation.urihttp://ieeexplore.ieee.org/document/7523323/
dc.rightsrestrictedAccesses_ES
dc.subjectpragmaticses_ES
dc.subjectsupervised learninges_ES
dc.subjectcomputational modelinges_ES
dc.subjectcomplexity theoryes_ES
dc.subjectentropyes_ES
dc.subjectdata modelses_ES
dc.subjectcomputing with wordses_ES
dc.subjectmulti-granular fuzzy linguistic modelinges_ES
dc.subjectgranular computinges_ES
dc.subjectclassificationes_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleImproving supervised learning classification methods using multi-granular linguistic modelling and fuzzy entropyes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1109/TFUZZ.2016.2594275


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem