• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-10 de 17

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Ball convergence of a sixth-order Newton-like method based on means under weak conditions 

    Magreñán, Á. Alberto ; Argyros, Ioannis K; Rainer, J Javier ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2018-08)
    We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative ...

    Extended local convergence for some inexact methods with applications 

    Argyros, Ioannis K; Legaz, M. J.; Magreñán, Á. Alberto; Moreno, D.; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2019-05)
    We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the ...

    Different methods for solving STEM problems 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2019-05)
    We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Study of local convergence and dynamics of a king-like two-step method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo ; Sicilia, Juan Antonio (Mathematics, 2020-07-01)
    In this paper, we present the local results of the convergence of the two-step King-like method to approximate the solution of nonlinear equations. In this study, we only apply conditions to the first derivative, because ...

    Weaker conditions for inexact mutitpoint Newton-like methods 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Moreno-Mediavilla, Daniel ; Orcos, Lara ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2020-01)
    In this paper we study the problem of analyzing the convergence both local and semilocal of inexact Newton-like methods for approximating the solution of an equation in which there exists nondifferentiability. We will ...

    Extending the Applicability of Stirling's Method 

    Amorós, Cristina ; Argyros, Ioannis K; Magreñán, Á. Alberto; Regmi, Samundra; González-Crespo, Rubén ; Sicilia, Juan Antonio (Mathematics, 2020-01)
    Stirling's method is considered as an alternative to Newton's method when the latter fails to converge to a solution of a nonlinear equation. Both methods converge quadratically under similar convergence criteria and require ...

    Improving the domain of parameters for Newton's method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto ; Sicilia, Juan Antonio (Journal of Computational and Applied Mathematics, 2017-07)
    We present a new technique to improve the convergence domain for Newton’s method both in the semilocal and local case. It turns out that with the new technique the sufficient convergence conditions for Newton’s method are ...

    Local convergence of a relaxed two-step Newton like method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto ; Orcos, Lara ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2017-08)
    We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fr,chet derivative ...

    New improved convergence analysis for Newton-like methods with applications 

    Magreñán, Á. Alberto ; Argyros, Ioannis K; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2017-08)
    We present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases ...

    A new technique for studying the convergence of Newton’s solver with real life applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Yáñez, Dionisio F.; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2020-04)
    The convergence domain for both the local and semilocal case of Newton’s method for Banach space valued operators is small in general. There is a plethora of articles that have extended the convergence criterion due to ...
    • 1
    • 2

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Sicilia, Juan Antonio (17)
    Argyros, Ioannis K (13)
    Magreñán, Á. Alberto (9)
    Magreñán, Á. Alberto (8)
    Orcos, Lara (4)... ver todoPalabra claveJCR (14)Scopus (14)banach space (6)local convergence (4)convergence (3)... ver todoFecha2021 (2)2020 (5)2019 (3)2018 (2)2017 (4)2016 (1)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja