• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Local convergence of a relaxed two-step Newton like method with applications

    Autor: 
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto (1)
    ;
    Orcos, Lara (1)
    ;
    Sicilia, Juan Antonio (1)
    Fecha: 
    08/2017
    Palabra clave: 
    two-step Newton's method; banach space; Frechet derivative; divided difference of first order; local/semilocal convergence; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5329
    DOI: 
    https://doi.org/10.1007/s10910-016-0722-8
    Dirección web: 
    https://link.springer.com/article/10.1007/s10910-016-0722-8
    Resumen:
    We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fr,chet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639-653, 2010, Appl Math Lett 25(12):2209-2217, 2012, Appl Math Comput 219(24):11341-11347, 2013, Appl Math Comput 219(15):7954-7963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fr,chet derivative and divided differences of order one. Numerical examples are also provided in this work.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    47
    73
    58
    29
    15
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Different methods for solving STEM problems 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara (1); Sarría, Íñigo (1); Sicilia, Juan Antonio (1) (Journal of Mathematical Chemistry, 05/2019)
      We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...
    • Weaker conditions for inexact mutitpoint Newton-like methods 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Moreno-Mediavilla, Daniel (1); Orcos, Lara (1); Sicilia, Juan Antonio (1) (Journal of Mathematical Chemistry, 01/2020)
      In this paper we study the problem of analyzing the convergence both local and semilocal of inexact Newton-like methods for approximating the solution of an equation in which there exists nondifferentiability. We will ...
    • Computer Application for the Evaluation of Mathematical Competence in Secondary Education: A Case Study 

      Orcos, Lara (1); Arias, Rosario; Magreñán, Á. Alberto; Sicilia, Juan Antonio (1); Sarría, Íñigo (1) (Communications in Computer and Information Science, 2019)
      The main purpose of this work is the development of an application that allows compulsory secondary education teachers the assessment of the students’ maths competence. An equation of prediction is obtained in a pilot study ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja