A new technique for studying the convergence of Newton’s solver with real life applications
Autor:
Argyros, Ioannis K
; Magreñán, Á. Alberto
; Yáñez, Dionisio F.
; Sicilia, Juan Antonio
Fecha:
04/2020Palabra clave:
Revista / editorial:
Journal of Mathematical ChemistryCitación:
Argyros, I.K., Magreñán, Á.A., Yáñez, D.F. et al. A new technique for studying the convergence of Newton’s solver with real life applications. J Math Chem 58, 816–830 (2020). https://doi.org/10.1007/s10910-020-01119-0Tipo de Ítem:
Articulo Revista IndexadaDirección web:
https://link.springer.com/article/10.1007/s10910-020-01119-0Resumen:
The convergence domain for both the local and semilocal case of Newton’s method for Banach space valued operators is small in general. There is a plethora of articles that have extended the convergence criterion due to Kantorovich under variations of the convergence conditions. In this article, we use a different approach than before to increase the convergence domain, and without necessarily using conditions on the inverse of the Fréchet-derivative of the operator involved. Favorable to us applications are given to test the convergence criteria.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
| Año |
| 2012 |
| 2013 |
| 2014 |
| 2015 |
| 2016 |
| 2017 |
| 2018 |
| 2019 |
| 2020 |
| 2021 |
| 2022 |
| 2023 |
| 2024 |
| 2025 |
| Vistas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 101 |
| 39 |
| 34 |
| 31 |
| 79 |
| 97 |
| Descargas |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Ball convergence of a sixth-order Newton-like method based on means under weak conditions
Magreñán, Á. Alberto ; Argyros, Ioannis K; Rainer, J Javier ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 08/2018)We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative ... -
Extended local convergence for some inexact methods with applications
Argyros, Ioannis K; Legaz, M. J.; Magreñán, Á. Alberto; Moreno, D.; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the ... -
Different methods for solving STEM problems
Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...





