• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    A new technique for studying the convergence of Newton’s solver with real life applications

    Autor: 
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto
    ;
    Yáñez, Dionisio F.
    ;
    Sicilia, Juan Antonio
    Fecha: 
    04/2020
    Palabra clave: 
    banach space; convergence; fréchet-derivative; Newton’s method; Scopus; JCR
    Revista / editorial: 
    Journal of Mathematical Chemistry
    Citación: 
    Argyros, I.K., Magreñán, Á.A., Yáñez, D.F. et al. A new technique for studying the convergence of Newton’s solver with real life applications. J Math Chem 58, 816–830 (2020). https://doi.org/10.1007/s10910-020-01119-0
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/10345
    DOI: 
    https://doi.org/10.1007/s10910-020-01119-0
    Dirección web: 
    https://link.springer.com/article/10.1007/s10910-020-01119-0
    Resumen:
    The convergence domain for both the local and semilocal case of Newton’s method for Banach space valued operators is small in general. There is a plethora of articles that have extended the convergence criterion due to Kantorovich under variations of the convergence conditions. In this article, we use a different approach than before to increase the convergence domain, and without necessarily using conditions on the inverse of the Fréchet-derivative of the operator involved. Favorable to us applications are given to test the convergence criteria.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    101
    39
    34
    31
    79
    50
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Ball convergence of a sixth-order Newton-like method based on means under weak conditions 

      Magreñán, Á. Alberto ; Argyros, Ioannis K; Rainer, J Javier ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 08/2018)
      We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative ...
    • Extended local convergence for some inexact methods with applications 

      Argyros, Ioannis K; Legaz, M. J.; Magreñán, Á. Alberto; Moreno, D.; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)
      We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the ...
    • Different methods for solving STEM problems 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)
      We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja